\qquad

1. (a) Convert the following to radian measure: 70°
(c) Determine the principal angle of $\frac{-37 \pi}{4}$ in radians.
2. Solve the following trigonometric equation: $\quad \sin x(1+2 \cos x)=0,-4 \pi \leq x<2 \pi$

$$
5 \csc \left(\frac{31 \pi}{6}\right)-3 \sec ^{2}\left(\frac{-23 \pi}{4}\right)+\sqrt{3} \tan \left(\frac{-16 \pi}{3}\right)-\sin \left(\frac{11 \pi}{2}\right)-5 \cos (58 \pi)
$$

4. Solve each of the following trigonometric equations:
(a) $3 \sin ^{2} x-7 \sin x=6, \quad-360^{\circ} \leq x \leq 720^{\circ}$
(b) $(2 \cos \theta-1)^{2}+9 \cos \theta=2 \cos \theta(\cos \theta+1), \quad-4 \pi \leq \theta \leq 2 \pi$
5. The helicopter shown has blades that are 12 m in length.
(a) If the blades made 380 revolutions in a 50 second interval, determine the angular velocity of the blades in radians/second?
(b) Given the conditions from part (a) determine how far the tip of one of these blades travels after 15 seconds has passed.
(c) Given that the helicopter has an internal gauge indicating that the blades are rotating at $725 \mathrm{~km} / \mathrm{h}$, determine the angular velocity of the blades in radians/second.
6. Determine the area of the shaded segment shown below:

