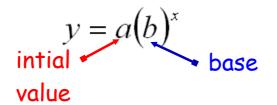
# Warm Up


Determine the common ratio for each of the following:



Determine an equation that would define each of the above sets of data:

(Hint: Look around your TI-83 for some help!!)

### Transformations of the Exponential Function

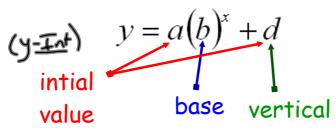


check with...



#### Properties:

If b > 1, then the graph will be GROWTH


If 0 < b < 1, then the graph will be **DECAY** 

y - intercept: happens when x = 0, so... | y-int = a

$$y$$
-int = a

#### Transformations of the Exponential Function

check with...



TI 44 Plus Sive Edition

To the Control of the Cont

Properties:

translation

If b > 1, then the graph will be GROWTH

If 0 < b < 1, then the graph will be DECAY

y - intercept: happens when x = 0, so...

y-int = a + d

**Horizontal Asymptote -** a horizontal line that a graph approaches but never intersects.

Equation of Horizontal Asymptote will be...

y = d

Domain - describes all possible *x*-values Range - describes all possible *y*-values

Thus, for exponential functions... Domain:  $\{x \in R\}$ 

Range:  $\{y > d\}$ 

Horizontal Asymptote

## Exercise: Complete the following table...

| Equation                                     | Growth/Decay | y-intercept | Eq'n for Horizontal<br>Asymptote |
|----------------------------------------------|--------------|-------------|----------------------------------|
| $y = 3(5)^x - 4$                             | C            | -1          | 7=-4                             |
| $y = 4\left(\frac{2}{5}\right)^x + 1$        | 17           | 5           | y=1                              |
| $y = 2^x - 2$                                | Cı           | - 7         | オニーチ                             |
| $y = \frac{3}{4} \left(\frac{1}{2}\right)^x$ | 0            | 314         | y=0                              |
| $y = 5(3)^x$                                 | C            | 5           | ソ=0                              |



- p. 129 #9 12
- p. 140 #43 (without technology) #44 #46

#### **Solutions**

- p. 129 9. b. This graph has a horizontal asymptote at y = 0.
  - c. The y intercept is at (0,2).
  - e. The graph is a decay curve, since 0 < b < 1.

10.

| Question | Function                  | y-intercept | Growth or decay | Reason       |
|----------|---------------------------|-------------|-----------------|--------------|
| а        | y = 4(3.2)×               | (0,4)       | growth          | b = 3.2 > 1  |
| þ        | y = 2.1(0.8) <sup>X</sup> | (0, 2.1)    | decay           | b = 0.8 < 1  |
| С        | y = 0.3(1.1) <sup>×</sup> | (0,0.3)     | growth          | b = 1.1 > 1  |
| d        | y = 0.7(0.85)×            | (0,0.7)     | decay           | b = 0.85 < 1 |

- 11. All three functions have a = 1, since they all cross the y axis at y = 1. The function f has a b that is greater than 0 but less than 1, since it is a decay curve. The functions g and h both have a b that is greater than 1, since they are both growth curves. The b in the equation for g will be greater than the b in the equation for h, since the curve for the function g rises at a faster rate than the curve for the function h.
- 12. a. f has a = 1, g has a = 2 and h has a = 3. We can see this by looking at the y intercepts of each of the graphs. For all three graphs, the ratio of successive y terms is 1.5, so the b for all three is equal to 1.5 b. The equations would be  $f(x) = 1.5^{\times}$ ,  $g(x) = 2(1.5)^{\times}$  and  $h(x) = 3(1.5)^{\times}$ .
- p. 140 #43. b) T

| Equation      | Eq'n for Horizontal |  |
|---------------|---------------------|--|
|               | Asymptote           |  |
| $y=2^x$       | Y = 0               |  |
| $y=2^x-1$     | Y = -1              |  |
| $y = 2^x + 3$ | Y=3                 |  |

#44. a) ii b) iv c) v d) vi e) i f) iii

#46.

| Equation              | Growth/Decay | y-intercept | Eq'n for Horizontal<br>Asymptote |
|-----------------------|--------------|-------------|----------------------------------|
| $y = 2^x - 3$         | Growth       | (0, -2)     | <i>Y</i> = -3                    |
| $y = 2(3)^x + 1$      | Growth       | (0,3)       | Y = 1                            |
| $y = 20(0.8)^x - 2.4$ | Decay        | (0, 17.6)   | Y = -2.4                         |
| $y = 1.7(1.25)^x$     | Growth       | (0, 1.7)    | Y = 0                            |