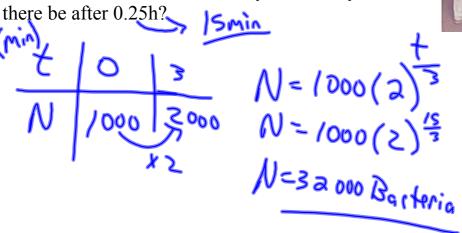
22.
$$\frac{Month}{Value} | \frac{3}{1000} | \frac{3}{1000} | \frac{1030.30}{1000} | \frac{M}{1000} | \frac{1030.30}{1000} | \frac{M}{1000} | \frac{M}{10000} | \frac{M}{100000} | \frac{M}{10000} | \frac{M}{10000} | \frac{M}{10000} | \frac{M}{10000} | \frac{M}{1000$$

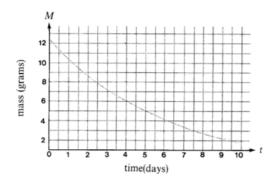

Peter and Mary have purchased a home in an affluent neighbourhood for \$225 000. The real estate agent informs them that homes in this area have generally appreciated by 10% every 5 years. Based on this, how much should they be able to sell their home for in 12 years? V= 225000(1.1)^(12/5) 282829.6672

Applications with Exponential Growth

Yeast cells increase their numbers exponentially by a process called budding. They duplicate themselves about every half hour. The **doubling period** is thus said to be 0.5 hours.

Example:

A bacterial strain doubles every 3 minutes. If there are 1000 bacteria initially, how many will


Example - Half Life...

Radioactive elements decay over time. The data below were recorded for radon, a radioactive substance. The initial amount of radon was 12.6 g.

amount of						-				
radon (grams)	10.5	8.8	7.3	6.1	5.1	4.2	3.5	2.9	2.4	2.0
time (days)	1	2	3	4	5	6	7	8	9	10

With the data displayed on a graph, you can see that the decay appears exponential.

The half-life of a radioactive element is the time taken for the element to decay by one half. In general, for a radioactive element the mass left after time, t, is given by

Example: 320 mg of Iodine 131 is stored in a laboratory for 40 d. At the end of this period only 10 mg of the element remains. What is the half-life of Iodine 131?

$$\frac{1}{2} | \frac{1}{2} | \frac{1$$

#26.
$$y = 5(1.2)^x$$
 OR $y = 5(3)^{\frac{x}{2}}$ OR $y = 5(9)^{\frac{x}{12}}$

Base - 2 (double)

Increment - every 16 years (2006 - 1990)

#29. Both are correct

#30. *a*)
$$y = 12(3)^{\frac{x}{2}}$$

b)
$$y = 48 \left(\frac{1}{2}\right)^{\frac{x}{3}}$$

c)
$$y = 3(2)^{\frac{x}{4}}$$

d)
$$y = 60(2)^{10x}$$

$$e) \ y = 6 \left(\frac{1}{3}\right)^{5x}$$

#31. a) 300 bacteria/cm²

b) 20 min

c) 1697 bacteria/cm²

#32. missing *x*-values: 12 & 18 missing *y*-values: 86.05 & 120.47

#33. a)
$$y = 0.87(0.82)^x$$

b)
$$y = 0.87(0.76)^x$$

c) $0.41\,candela\,/cm^2$

#34. a)
$$y = 2.8 \left(\frac{1}{2}\right)^{\frac{x}{5750}}$$

b) 0.66 mg

#35. \$1414. 21 (wrong assumption)

#36. a)
$$y = 3500(0.629)^{\frac{x}{2}}$$

c) 691 frogs

#39. \$283 000

Review of Applications of Growth and Decay...

Assume you invest \$5,000 in an account paying 8% interest compounded monthly. How much money will be in the account after 5 years?

Find the amount of money you will have after 10 years if \$15,000 is invested in accounts paying 6% interest compounded:

n = Total compounding

\$ 1000 000