Gas is being pumped into a spherical balloon at the rate of $3 \mathrm{~cm}^{3} / \mathrm{s}$.
(a) How fast is the radius increasing when the radius is 15 cm ?
(b) Without using the result from (a), find the rate at which the surface area of the balloon is increasing when the radius is 15 cm .

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \quad S A=4 \pi r^{2} \quad D=1125 \pi \quad V=\frac{4}{3} \pi r^{3} \\
& \text { a) } \frac{d U}{d t}=4 \pi r^{2} \frac{d r}{d t} \\
& \begin{array}{l}
3=4 \pi(s)^{2} \frac{d n}{d t} \\
3=d r
\end{array} \\
& \begin{array}{l}
\text { b) } 5 A=4 \pi /\left(\frac{3 v}{4 \pi}\right)^{2} \frac{3 V}{4 \pi}=r^{3} \\
\frac{d 5 A}{d t}=\frac{8 \pi}{3}\left(\frac{3 v}{4 \pi}\right)^{-1 / 3}\left(\frac{3 v}{4 \pi}\right)^{\frac{3}{4 \pi}}=r \\
\left.=\frac{d v}{d t}\right) \\
=\frac{3 \pi}{\boxed{J}}\left(\frac{3(1125 \pi}{\pi}\right)^{-1 / 3}\left(\frac{B}{4 N}\right)(3) \\
=6(3375)^{-1 / 3}
\end{array} \\
& =0.4 \mathrm{~cm}^{2} / \mathrm{sec}_{\mathrm{c}}
\end{aligned}
$$

Water is leaking out of the bottom of an inverted conical tank at the rate of $\frac{1}{10} \mathrm{~m}^{3} / \mathrm{min}$, and at the same time is being pumped in the top at a constant rate of $k \mathrm{~m}^{3} / \mathrm{min}$. The tank has height 6 m and the radius at the top is 2 m . Determine the constant k if the water level is rising at the rate of $\frac{1}{5} \mathrm{~m} / \mathrm{min}$ when the height of the water is 2 m . Recall that the volume of a cone of radius r and height h is

$\sqrt[6]{\frac{\text { Tank }}{2}}$
Water

$$
\begin{aligned}
& V=\frac{1}{3} \pi\left(\frac{1}{3} h\right)^{2} h \\
& V=\frac{1}{27} \pi h^{3}
\end{aligned}
$$

$$
\begin{aligned}
& K-\frac{1}{10}=\frac{1}{9} \pi(2)^{2}\left(\frac{1}{5}\right) \\
& K=\frac{4 \pi}{4 \pi}+\frac{1}{2}
\end{aligned}
$$

$$
K=\frac{4 \pi}{45}+\frac{1}{10} .
$$

$$
K=0.379 \mathrm{~m}^{3} / \mathrm{min}
$$

A rectangular trough is 2 meter long, 0.5 meter across the top and 1 meter deep. At what rate must water be poured into the trough such that the depth of the water is increasing at $1 \mathrm{~m} / \mathrm{min}$ when the depth of the water 50.7 m

$\frac{d V}{d t}=1 \mathrm{~m}^{3} / \min$.

