5.6 Properties of Linear Relations

LESSON FOCUS

Identify and represent linear relations in different ways.

Make Connections

The table of values and graph show the cost of a pizza with up to 5 extra toppings.

Number of Extra Toppings	Cost (\$)
0	12.00
1	12.75
2	13.50
3	14.25
4	15.00
5	15.75

Number of Extra Toppings	Cost (\$)
0	12.00
1	12.75
2	13.50
3	14.25
4	15.00
5	15.75

What patterns do you see in the table?

Write a rule for the pattern that relates the cost of a pizza to the number of its toppings.

How are the patterns in the table shown in the graph?

How can you tell from the table that the graph represents a linear relation?

$$C = 12 + 0.75n$$

Here is another example of a linear relation...

The cost for a car rental is \$60, plus \$20 for every 100 km driven.

The independent variable is the distance driven and the dependent variable is the cost.

We can identify that this is a linear relation in different ways.

a table of values

For a linear relation, a constant change in the independent variable results in a constant change in the dependent variable.

How to identify a linear relation...

a set of ordered pairs

Why is it important that the ordered pairs are listed so their first elements are in numerical order?

a graph

Car Rental Cost

The graph of a linear relation is a straight line.

We can use each representation to calculate the rate of change.

The rate of change can be expressed as a fraction:

$$\frac{\text{change in dependent variable}}{\text{change in independent variable}} = \frac{\$20}{100 \text{ km}}$$

$$= $0.20/km$$

Which table of values represents a linear relation? Justify your answer.

a) The relation between the number of bacteria in a culture, n, and time, t minutes.

+,	0 20 40 60 80 100	n 1 2 4 8 16 32	*> Not Linear	_
	100	32		

b) The relation between the amount of goods and services tax charged, T dollars, and the amount of the purchase, A dollars

A	T	
60	3	
120	6	Lingan
180	9	- 40V
240	12	
300	15	

The rate of change is 0.20/km; that is, for each additional 1 km driven, the rental cost increases by 20¢. The rate of change is constant for a linear relation.

We can determine the rate of change from the equation that represents the linear function.

Let the cost be C dollars and the distance driven be d kilometres.

An equation for this linear function is:

c.

e.

f.

Mr lams data.84state