Solve the following quadratic equations by completing the square:

 $10x^2 - 3 = x$

$$x^{2} + 3x = x + 11$$

$$x^{2} + 3x - x - 11 = 0$$

$$x^{2} + \lambda_{x} - 11 = 0$$

$$x^{2} + \lambda_{x} + 1$$

$$x^{2} + \lambda_{$$

Create a quadratic function with the following zeros: $-3 \pm \sqrt{2}$

(Hint: Try and Reverse the completing the square process)

Page 45- 47: #10 (2nd column) #11, #12 c, e #13, #15, #17a, b

SOLUTIONS...

#10. a) - 9and 1 b)
$$-\frac{1}{2}$$
 and $\frac{5}{2}$

c)
$$3 \pm \sqrt{11}$$

c)
$$3 \pm \sqrt{11}$$
 d) $-\frac{4}{3}$ and $\frac{8}{3}$

$$e) - \frac{5}{2} \pm \frac{\sqrt{30}}{2}$$
 $f) - 3$ and 3

g) - 5 and 1 h) -
$$\frac{1}{4} \pm \frac{\sqrt{37}}{4}$$

#11. Mary: forgot to divide by 2 before squaring. Terry: incorrectly factored the expression.

#12. (c)
$$y = 2x^2 + 7x + 3$$
 (Any multiple of these would be correct)

#13. $y = 1.5x^2 - 6$ (There are many others that work)

#15. a)
$$c = -8$$

#15. a)
$$c = -8$$
 #17. (a) $x = 2$ and -0.75

(b)
$$x \approx -2.819$$
 and -0.780