Wintsheet

$$# \frac{1}{4} (f) = -20 \implies t_1 + (5-1)d$$

$$t_{18} = -53 \implies t_1 + (18-1)d$$

$$t_{n}=at(n-1)d$$

$$-20 = t, +4d$$

$$-53 = t, +17d$$

$$23 = -13d$$

$$\zeta' = -70 + 135$$

$$\zeta' = -70 + 135$$

$$13$$

$$30 = \zeta' + 135$$

$$L_{1} = \frac{260}{13} + \frac{132}{13}$$

$$t_{n} = \frac{-128}{13} + (n-1)\left(\frac{-33}{13}\right)$$

$$\frac{13}{5} = \frac{13}{13} = \frac{13}{13} + \frac{13}{13}$$

 $d = \frac{33}{12}$

Fibonacci Numbers

1, 1, 2, 3, 5, θ , 13, λ /, ...

Finish the above number sequence!!!

1202

Leonardo Pisano Fibonacci Born 1170 in (probably) Pisa Died 1250 in (possibly) Pisa

His Book:

<u>Liber abaci</u> *The Book of the Abacus*His work introduces the arithmetic and algebra he learned in the Middle East.

Fibonacci introduces the Fibonacci Sequence

Marie and Marthause Bright (Parties Stat)

The Fibonacci Sequence

- Important numerical sequence over 800 years old that was originally developed to predict how many pairs of rabbits there will be if one assumes that each month, each pair produces a new pair of baby rabbits, that then bear again two months later...
- The sequence begins with 1, and each successive number is the sum of the previous two numbers.
- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ...

0+1 1+1 1+2 2+3 3+5 5+8...

Pascal's Triangle 1 2 1 1 3 3 1 1 4 6 4 1 5 10 10 5

Diagonals in Pascal's Triangle

Levels of Differences

The results of subtracting consecutive terms in a sequence are referred to as Levels of Difference.

• If the First-level Differences (D₁) result in a common number, the relation is LINEAR

• If the Second-Level Differences (D2) result in a common number, the relation is **QUADRATIC**

• If the Third-Level Differences (D₃) result in a common number, the relation is <u>CUBIC</u>

• If the Forth-Level Differences (D₄) result in a common number, the relation is QUARTIC

Functions

- a *function* is a special relationship where each value of x has "one and only one" y value.
- we can quickly tell from a graph when a relation is a function by doing a...

VERTICAL LINE TEST

- the **degree** of a function is the value of the *highest exponent* in the equation or the *sum of the exponents* in a term containing more than one variable . For example, a quadratic function is of degree 2.

Examples:

H= x3+7x2-

Person:

J= 327-26-346 deno 7

EXAMPLES of Functions...

EXAMPLES of Non-Functions...

Determining General Term with the TI-83

QuadRe9 9=ax²+bx+c a= -2 b=1 c= -3

Example:

Determine the general term, t_n , of the above sequence. b_{1} : -5.-9

- 1. Determine if the sequence is linear, quadratic, cubic or quartic.
 - (Using Levels of Difference-on your own paper)
- 2. Enter the data into Lists: $n \Rightarrow L_1$ $t_n \Rightarrow L_2$

3. Then "Calculate" the regression for the type of function determined by the level of diffences.

QuadRe9
$$y=ax^{2}+bx+c$$
 $a=-2$
 $b=1$
 $c=-3$

$$= -450+15-3$$

$$= -438$$