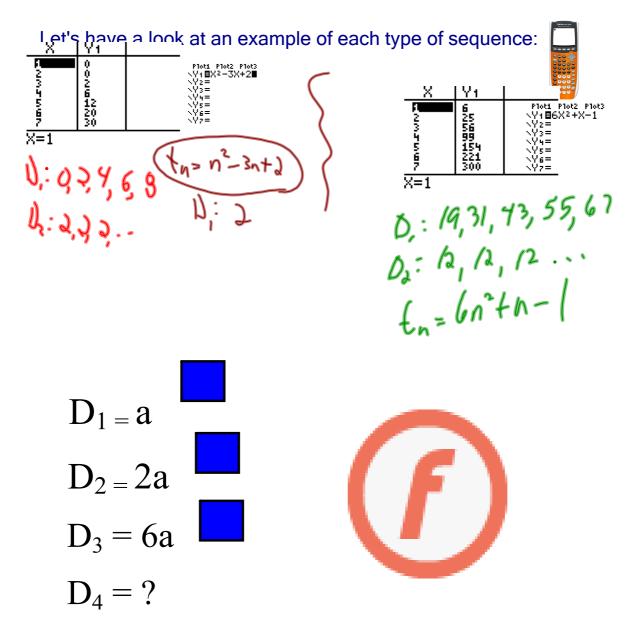

Warm Up

Given the sequence 0, 22, 70, 156, 292, 490, 762, ...


Determine the value of t_{75} without using a pencil and paper!

D,: 22, 48, 86, 136 Dz: 26, 38, 50 Dz: 12,12 (ubic

Pattern from Levels of Difference??


How can the first term in a sequence be determined using levels of difference?

In general, the level of the common difference is equal to the degree of the power sequence.

Definition: n! = n(n-1)(n-2)(n-3)...(3)(2)(1) [e.g. 5! = (5)(4)(3)(2)(1)] If m is the degree of a power sequence, then $D_m = m!a$ e.g if the sequence is quartic, then $D_4 = 4!a = (4)(3)(2)(1)a = 24a$.

Warm Up

Quadratic Functions $y = ax^2 + bx + c$

$$y = ax^2 + bx + c$$

where "a" and "b" are coefficients and "c" is a constant

- The functions is said to have a degree of 2 (highest exponent)
- There are 3 forms of a quadratic equation...

GENERAL	STANDARD	TRANSFORMATIONAL
$y = ax^2 + bx + c$	$y = a(x - h)^2 + k$	$\frac{1}{a}(y-k)=(x-h)^2$

where

"a" is the vertical stretch factor

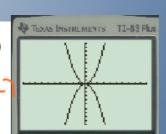
"h" is the horizontal translation

"k" is the vertical translation

Mapping Notation - a notation that describes how a graph and its standard image are related.

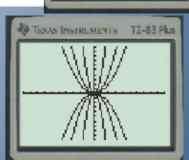
For Quadratic Functions...
$$y = a(x-h)^2 + K$$

$$(x, y) \Rightarrow (x + h, ay + k)$$

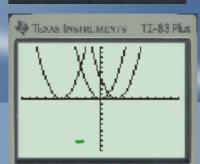

Where the first point from the graph $y = x^2$ maps onto a point in the image graph.

Transformations of the Quadratic Function in Standard Form

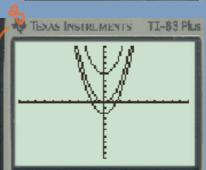
$$y = a (x - h)^2 + k$$


Direction of Opening: ("Look at the <u>sign</u> of the stretch factor")

- If a > 0, then the graph opens upward.
- If a < 0, then the graph opens downward.


Vertical Stretch: ("Look at the <u>magnitude</u> of the stretch factor")

- If |a|>1, then the graph becomes narrower.
- If |a| = 1, then the graph <u>stays the same</u>.
- If 0 < |a| < 1, then the graph becomes wider.


Horizontal Translation: ("Think opposite")

- If h > 0, then the graph moves to the right h units.
- If h = 0, then the graph does not move horizontally.
- If h < 0, then the graph moves to the left h units.

Vertical Translation: ("Exactly the same")

- If k > 0, then the graph moves upward k units.
- If k = 0, then the graph <u>does not move vertically</u>.
- If k < 0, then the graph moves downward k units.

$$J = -3(x+5) + 2$$

$$Shape: Parabola$$

$$Dir. of opening: Down

Hor. Trans.: Left "s"

Ver. Shift: Up 2

Mapping Rule: $(x,y) \rightarrow (x-5,-3y+2)$

$$y = x^{2}$$

$$x \mid y \longrightarrow x$$

$$-3 \mid y \longrightarrow x$$$$