Quadratic Functions

$y = ax^2 + bx + c$

where "a" and "b" are coefficients and "c" is a constant

- The functions is said to have a degree of 2 (highest exponent)
- There are 3 forms of a quadratic equation...

GENERAL	STANDARD	TRANSFORMATIONAL
$y = ax^2 + bx + c$	$y = a(x-h)^2 + k$ Verlex: (h, K)	$\frac{\frac{1}{a}(y-k) = (x-h)^2}{V(4,1x)}$

where	"a" is the vertical stretch factor
	"h" is the horizontal translation
	"k" is the vertical translation

Mapping Notation - a notation that describes how a graph and its standard image are related.

For Quadratic Functions...

$$(x, y) \Rightarrow (x + h, ay + k)$$

Where the first point from the graph $y = x^2$ maps onto a point in the image graph.

Properties of a Quadratic

• identify key properties and points...

Example #1: Change from standard to transformational form.

Example #2: Change from transformational to standard form.

Example #3: Change from standard to general form.

Homework...

TEXT: p. 30 #6 - 10

Text Solns_p. 30 Ques. 6 - 10.doc

Bonus

Create a quadratic sequence of 5 terms satisfying the following properties:

 $t_1 = 4$

Second level of difference results in the constants 6

Text Solns_p. 30 Ques. 6 - 10.doc