Simplify:

$$
\begin{aligned}
& \text { (1) } \frac{\sqrt{3}-2 \sqrt{6}}{4 \sqrt{2}}\left(\frac{\sqrt{2}}{\sqrt{2}}\right) \\
& t=\frac{\sqrt{6}-2 \sqrt{12}}{4(2)} \sqrt{4 \times 3} \\
& =\frac{\sqrt{6}-4 \sqrt{3}}{8} \\
& \text { (2) } \frac{\frac{2 \sqrt{10}-3}{\sqrt{3}-2 \sqrt{8}}}{\text { Binomid }}\left(\frac{\sqrt{3}+2 \sqrt{8}}{\sqrt{3}+2 \sqrt{8}}\right) \\
& =\frac{2 \sqrt{30}+4 \sqrt{80}-3 \sqrt{3}-.6 \sqrt{8}}{3-4(8)} \\
& =\frac{2 \sqrt{30}+16 \sqrt{5}-3 \sqrt{3}-12 \sqrt{2}}{3-32} \\
& =\frac{2 \sqrt{30}+16 \sqrt{5}-3 \sqrt{5}-12 \sqrt{2}}{29}=\frac{2 \sqrt{30}+16 \sqrt{5}-3 \sqrt{3}-12 \sqrt{2}}{-29} \\
& =\frac{-2 \sqrt{30} y 6 \sqrt{5}+3 \sqrt{3}+12 \sqrt{2}}{29}
\end{aligned}
$$

Unit REview

- Rational/Irrational \#s
\rightarrow simplify (Mixed \rightarrow Entire)
- Radicals \rightarrow Calculator
- Radicals \longleftrightarrow Exponents : $\left(\sqrt[n]{x^{k^{\prime}}}\right)^{m}=x^{\frac{m}{n}}$
- Negative Exponents

$$
\sqrt[n]{x^{m}}=x^{m}
$$

(1) $b^{-x}=\frac{1}{b^{x}}$
(2) $\left(\frac{a}{b}\right)^{-x}$
(3)

$$
\begin{aligned}
& \frac{a^{-x}}{b}=\frac{1}{a^{x} b} \\
& \frac{b^{-1}}{a^{x}}
\end{aligned}
$$

$$
\left(\frac{b}{a}\right)^{x}
$$

- Laws of Exponents
\Rightarrow Zero Exponent
\Rightarrow Writing to a common Base
- Operations with Radicals

$$
\begin{aligned}
\Rightarrow \text { Add, Subtract, Multiplying (Square), } & \text { Division } \\
& \left(\begin{array}{l}
\text { Rationalizing })
\end{array}\right.
\end{aligned}
$$

Test: Monday, Oct 3
How should you prepare?
\rightarrow Look over old questions
\rightarrow Know your facts
\rightarrow PRATT \rightarrow sheets \rightarrow anil $_{\text {u in }}$
\rightarrow PRACTICE!! \rightarrow Textbook
\rightarrow Warmups
Review from text:
Pg. 246-249

