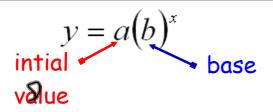
Warm Up

Solve for x:
$$32(2^{2x}) - 12(2^{x}) + 1 = 0$$
 $32(0)^{2} - [2(0)] + 1 = 0$
 $32(0)^{2} - [2(0)] + 1 = 0$
 $32(0)^{2} - [2(0)] + 1 = 0$
 $-80(-40+1) - 40+1 = 0$
 $-80 = -1$
 $-40 = -1$
 $-80 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 = -1$
 $-40 =$

Transformations of the Exponential Function



check with...

Properties:

If b > 1, then the graph will be

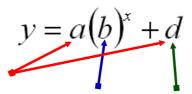
If $0 \le b \le 1$, then the graph will be

y - intercept: happens when , so...

Decay

y-int = a

Transformations of the Exponential Function



check with...

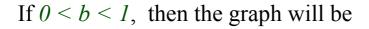
intial value

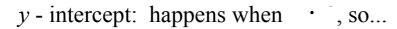
base vertical

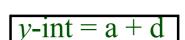
Properties:

translation

If b > I, then the graph will be







Horizontal Asymptote - a horizontal line that a graph approaches but never intersects.

Equation of Horizontal Asymptote will be...

Domain - describes all possible *x*-values Range - describes all possible *y*-values

Thus, for exponential functions...

Domain: $\{x \in R\}$

Range: $\{y > d\}$

Horizontal Asymptote

Exercise: Complete the following table...

Equation	Growth/Decay	y-intercept	Eq'n for Horizontal Asymptote
$y=3(5)^x-4$	67	-	y= -4
$y = 4\left(\frac{2}{5}\right)^x + 1$	D	5	5=1
$y = (2^x) - 2$	6	_ '	ソデス
$y = \frac{3}{4} \left(\frac{1}{2}\right)^x$	D	34	4-0
$y = 5(3)^x$	5	5	4=0

Determine a function that would represent each table of values $y = 2(3)^{x}$ $y=3/4(1/2)^{x}$.375 .1875 .09375 .04688

Examine the following sets of data and determine a function that would represent each set of data:

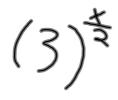
• Verify your solutions on a TI-83 calculator

x	0	1	2	3	4
y	2	2.4	2.88	3.456	4.1472

Notice that the scale is no longer established using increments of 1...

• How does this change the development of the representative function?

x	0	2	4	6	8
y	1	3	9	27	81



x	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
y	5	10	20	40	80

$$x \cdot 3 = 5(2)^{\frac{1}{2}} - 5(2)^{2x}$$

Applications of the Exponential Function

$$y = a(b)^{\frac{x}{c}}$$
 Increment (x scale)

Initial Amount (y-intercept)

Base

Properties:

If b > 1, then the graph will be

If $0 \le b \le I$, then the graph will be

y - intercept: happens when • , so...

Domain - describes all possible *x*-values Range - describes all possible *y*-values

Thus, for exponential functions... Domain: $\{x \in R\}$

Range: $\{y > d\}$

Exam	ple				
	×	0	2	4	6
	У	<u>3</u>	<u>12</u>	<u>48</u>	<u> 192</u>
Write the equation of the exponential function					

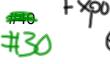


Now you try!

Fit an exponential equation to the following data:

X	0	3	6	9		
у	5 X	10	20	40		
	5(2) 3					
X	0	2	4	6		
у	2	0.4	0.08	0.016		
	3(%)	*				
X	0	0.75	1.5	2.25		
у	4	8	16	32		
y=4(2) = 4(2) = 4(2) = X.4 - 4.2						
	Sh	1	= 4/3	·X		

p.136



equations

p. 129 #9 - 12

p. 140 #43 (without technology) #44 #46 10-12

Solutions

- p. 123 #54. a) grasshopper will NEVER reach the fence.
 - b) horizontal asymptote
- $p.\ 129 \qquad \text{9.} \quad \text{b. This graph has a horizontal asymptote at y} = 0.$
 - c. The y intercept is at (0,2).
 - e. The graph is a decay curve, since 0 < b < 1.

10.

Question	Function	y-intercept	Growth or decay	Reason
а	y = 4(3.2)×	(0,4)	growth	b = 3.2 > 1
b	y = 2.1(0.8)×	(0, 2.1)	decay	b = 0.8 < 1
С	y = 0.3(1.1) [×]	(0,0.3)	growth	b = 1.1 > 1
d	y = 0.7(0.85)×	(0,0.7)	decay	b = 0.85 < 1

- 11. All three functions have a = 1, since they all cross the y axis at y = 1. The function f has a b that is greater than 0 but less than 1, since it is a decay curve. The functions g and h both have a b that is greater than 1, since they are both growth curves. The b in the equation for g will be greater than the b in the equation for h, since the curve for the function g rises at a faster rate than the curve for the function h.
- 12. a. f has a = 1, g has a = 2 and h has a = 3. We can see this by looking at the y intercepts of each of the graphs. For all three graphs, the ratio of successive y terms is 1.5, so the b for all three is equal to 1.5 b. The equations would be $f(x) = 1.5^{\times}$, $g(x) = 2(1.5)^{\times}$ and $h(x) = 3(1.5)^{\times}$.
- p. 140 #43. b)

Equation	Eq'n for Horizontal
	Asymptote
$y=2^x$	Y = 0
$y = 2^x - 1$	Y = -1
$y = 2^x + 3$	Y=3

#44. a) ii b) iv c) v d) vi e) i f) iii

#46.

Equation	Growth/Decay	y-intercept	Eq'n for Horizontal Asymptote
$y = 2^x - 3$	Growth	(0, -2)	<i>Y</i> = - 3
$y = 2(3)^x + 1$	Growth	(0,3)	Y = 1
$y = 20(0.8)^x - 2.4$	Decay	(0, 17.6)	Y = -2.4
$y = 1.7(1.25)^x$	Growth	(0, 1.7)	Y = 0