1. Use the definition of a derivative (First Principle) to determine the derivative of $f(x)=\sqrt{2 x-1}$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h) \cdot F(x)}{h} \\
& \lim _{h \rightarrow 0} \frac{\sqrt{2 x+2 h-1}-\sqrt{2 x-1}}{h}\left(\frac{\sqrt{2 x+2 h-1}+\sqrt{2 x-1}}{\sqrt{2 x+c h+h}+\sqrt{2 x-1}}\right) \\
& \lim _{h \rightarrow 0} \frac{(2 x+2 h-1)-(2 x-1)}{h(\sqrt{2 x+2 k+1}+\sqrt{2 x-1})} \\
& \lim _{h \rightarrow 0} \frac{2 h(\sqrt{2 x+2 h+\infty}+\sqrt{2 x-1})}{2} \\
& =\frac{2}{\sqrt{2 x+1}+\sqrt{2 x-1}} \\
& =\frac{2}{2 \sqrt{2 x-1}} \\
& =\frac{1}{\sqrt{2 x-1}}
\end{aligned}
$$

2. Evaluate each of the following limits, if they exist:
[16]
(a) $\lim _{x \rightarrow 0} \frac{\sin ^{3} 8 x}{27 x^{3}}$
(b) $\lim _{w \rightarrow 5} \frac{\frac{1}{w}-\frac{1}{5}}{25-w^{2}}$
$\lim _{x \rightarrow 0}\left(\frac{5.8 x}{4 x}\right)^{3} \frac{512}{27}$
$\lim _{w \rightarrow 5} \frac{5-\infty}{5 \omega} \times \frac{1}{(5-\omega)(5+\omega)}$
$=\frac{512}{27}$
$=\frac{1}{25(10)}$
$=\frac{1}{250}$
(c) $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2}$

$$
\begin{aligned}
& \lim _{x \rightarrow-2} \frac{(x+2)\left(r^{2}+2 x+4\right)}{x+2} \\
& =(-2)^{2}-2(-2)+4 \\
& =4+4+4 \\
& =12
\end{aligned}
$$

(d) $\lim _{x \rightarrow \infty} \frac{25 x^{4}-1}{1-x^{4}}$

$$
\lim _{x \rightarrow \infty} \frac{\frac{25 x^{4}}{x^{4}}-\frac{1}{x^{2}}}{\frac{1}{x^{4}}-\frac{x^{0}}{x^{4}}}
$$

$$
\lim _{x \rightarrow \infty} \frac{25-0}{0-1}
$$

$$
=-25
$$

3. Find the first derivative of each of the following functions. Do not simplify your answers.
(a) $f(x)=(\tan x) \sqrt{4+9 x^{2}}$
$f^{\prime}(x)=\sec ^{2} x \sqrt{4+9 x^{2}}+\tan x\left[\frac{1}{2}\left(4+9 x^{2}\right)^{0 / 2}(10 x)\right]$
(b) $h(x)=4 \sqrt{x}-\frac{2}{\sqrt[5]{x}}+x^{-2}-e^{5}$

$$
h(x)=4 x^{1 / 2}-2 x^{-1 / 5}+x^{-2}-e^{5}
$$

$h^{\prime}(x)=2 x^{-\frac{1}{2}}+\frac{2}{5} x^{-6 / 5}-2 x^{-3}$
(c) $y=\frac{\sin ^{3} 3 x}{2+\sec x^{3}}$
$y^{\prime}=\frac{3(\sin 3 x)^{2}(\cos 3 x(3))\left(2+\sec x^{3}\right)-\sin ^{3} 3 x\left(\sec x^{3} \tan x^{3}\left(3 x^{2}\right)\right)}{\left(2+\sec x^{3}\right)^{2}}$
4. (a) Given $f(x)=\sqrt{1-2 x}$, evaluate $f^{\prime \prime \prime}(-4)$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2}(1-2 x)^{-1 / 2}(-2) \\
& f^{\prime}(x)=-(1-2 x)^{-1 / 2} \\
& f^{\prime \prime}(x)=\frac{1}{2}(1-2 x)^{-3 / 2}(-2) \\
& f^{\prime \prime}(x)=-(1-2 x)^{-3 / 2} \\
& f^{\prime \prime \prime}(x)=\frac{3}{2}(1-2 x)^{-5 / 2}(-2) \\
& f^{\prime \prime \prime}(x)=-3(1-2 x)^{-\frac{5}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime \prime \prime}(-4)=-3(1-2(-4))^{-5 / 2} \\
&=-3(9)^{-5 / 2} \\
&=\frac{-3}{9^{5 / 2}} \\
&=\frac{-3}{(\sqrt{9})^{5}} \\
&=-\frac{1}{81} \\
& \approx-0.0123
\end{aligned}
$$

(b) Given the curve $x^{3}+y^{3}=6 x y$, find the equation of the tangent line at $(3,3)$.
[5]

$$
\begin{array}{rlr}
3 x^{2}+3 y^{2} \frac{d y}{d x}=6 y+6 x \frac{d y}{d x} & \\
\left(3 y^{2}-6 x\right) \frac{d y}{d x}=6 y-3 x^{2} & y-3=-1(x-3) \\
\frac{d y}{d x}=\frac{6 y-3 x^{2}}{3 y^{2}-6 x} & y-3=-x+3 \\
\text { at }(3,3) m & =\frac{18-3(9)}{27-18} & x+y-6=0 \\
m & =\frac{-9}{9}=-1 &
\end{array}
$$

5. A small helium balloon is rising at the rate of $8 \mathrm{ft} . / \mathrm{sec}$, a horizontal distance of 12 feet from a 20 ft . lamppost. Determine the rate at which the shadow of the balloon is moving along the ground when it is 5 feet above the ground.
when $x=5 \ldots$

$$
\frac{20}{x}=\frac{12+y}{y}
$$

$$
20 y=12 x+x y
$$

$$
\frac{20}{5}=\frac{12+y}{y}
$$

$$
20 \frac{d y}{d t}=12 \frac{d x}{d t}+\frac{d y}{d t} y+x \frac{d y}{d t}
$$

$$
20 y=60+5 y
$$

$$
20 \frac{d y}{d t}=12(8)+i(y)+5 \frac{d y}{d t}
$$

$$
15 y=60
$$

$$
y=4
$$

$$
15 \frac{d y}{d t}=12 v
$$

$$
\frac{d y}{d t}=8.53 \mathrm{fect} / \mathrm{sec}
$$

6. (a) Find the equation of the normal drawn to $y=\left(\frac{x+3}{3 x-6}\right)^{3}$ at $x=3$.
[6]
(b) Given $f(x)=\left\{\begin{array}{lll}3 & \text { if } & x \leq-2 \\ x^{2} & \text { if } & -2<x \leq 1 \\ 3-k & \text { if } & x \geq 1\end{array}\right.$. Find each of the following:
(i) $\lim _{x \rightarrow-2} f(x)=3$
(ii) $\lim _{x \rightarrow-2} f(x)=4$
(iii) $f(-2)=3$

$$
\begin{aligned}
& y^{\prime}=3\left(\frac{x+3}{3 x-6}\right)^{2}\left(\frac{1(3 x-6)-(x+3)(3)}{(3 x-6)^{2}}\right) \quad y=\left(\frac{3+3}{3}\right)^{3} \\
& y=8 \\
& \text { at } x=3 \quad m=3\left(\frac{6}{3}\right)^{2}\left(\frac{\pi-18}{3^{2}}\right) \\
& (3,8) \\
& m=3(2)^{2}\left(\frac{-15}{9}\right) \\
& m=-20 \\
& \therefore \text { Slope of normal }=\frac{1}{20} 0 \\
& 20 y-160=x-3
\end{aligned}
$$

7. A billiard ball is hit and travels in a straight line according to the formula $s(t)=40 t^{2}+60 t$, where s is the distance traveled in centimeters, and t is the time in seconds. How fast is the ball traveling when it hits the cushion 40 cm from it's initial position?

$$
\begin{array}{lr}
40 t^{2}+60 t=40 & \text { Need velocity at } t=\frac{1}{2} \\
40 t^{2}+60 t-40=0 & \\
2 t^{2}+3 t-2=0 & s^{\prime}(t)=80 t+60 \\
2 t^{2}+4 t-t-2=0 & s^{\prime}\left(\frac{1}{2}\right)=80\left(\frac{1}{2}\right)+60 \\
2 t(t+2)-1(t+2)=0 & \\
(2 t-1)(t+2)=0 & \\
t=\frac{1}{2} \text { or }^{-2} &
\end{array}
$$

8. Given the function $f(x)=x^{4}-6 x^{2}+3 \ldots$
(i) Determine the intervals of increase and decrease for the function.
(ii) Determine all local maxima or minima points.
(iii) Determine the absolute maximum of $f(x)$ on the closed interval $[-1,2]$.

