$\mathrm{Pg} \cdot 188$
\#2/ Minimize Sum $\} \begin{aligned} & x-1^{s t} \# \\ & y \rightarrow \partial^{n d} \#\end{aligned}$

$$
\begin{aligned}
& S=x+2 y \\
& x_{y}=200 \\
& S(x)=x+2\left(\frac{200}{x}\right) \\
& y=\frac{200}{x} \\
& S(x)=x+400 x^{-1} \\
& S^{\prime}(x)=1-400 x^{-2} \\
& 0=1-\frac{400}{x^{2}} \\
& 0=x^{2}-400 \Longrightarrow \sqrt{400}=\sqrt{x^{2}} \\
& 0=(x-20)(x+20) \quad \pm 20=x \\
& x= \pm 20 \\
& 2 \text { Positives }: x \neq-20 \\
& x=20 \\
& \left.\begin{array}{l}
x=20 \\
y=\frac{200}{20}=10
\end{array}\right\} 20 ; 10
\end{aligned}
$$

17/

Let "L 'Rep time in hours after " A " leaves the dock $d=s t$

$$
d=\sqrt{(25 t)^{2}+(20-20 t)^{2}}
$$

$$
d^{\prime}=\frac{1}{2}\left[625 t^{2}+\left(20-20 t^{2}\right)^{2}\right]^{-\frac{1}{2}}[1250 t-20(200-20 t)+2(20-20 t)(-00)]
$$

$$
O=\frac{\begin{array}{l}
625 t-20(20-20 t) \\
\hline 250 t-10(20-20 t)
\end{array}}{\ngtr \sqrt{625 x^{2}+(20-20 t)^{2}}}
$$

$$
0=625 t-400+400 t
$$

$$
400=1025 t
$$

$$
\frac{400}{1025}=t
$$

$$
\begin{aligned}
t & =0.39 \text { hours } \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \\
& \doteq 23 \text { minutes }
\end{aligned}
$$

$\doteq 23$ minutes
\therefore Closest @ $2: 23 \mathrm{Pm}$
11. $2 y=x^{2} \quad(-4,1)$
, Minimize Distance

$$
\begin{aligned}
& d=\sqrt{(x+4)^{2}+\left(\frac{1}{2} x^{2}-1\right)^{2}} \\
& d^{\prime}=\frac{1}{2}\left[(x+4)^{2}+\left(\frac{1}{2} x^{2}-1\right)^{2}\right]^{-1 / 2}\left[2(x+4)^{\prime}+\left(\frac{1}{2} x^{2}-1\right)^{1}(x)\right] \\
& 0=(x+4)+x\left(\frac{1}{2} x^{2}-1\right) \\
& 0=x+4+\frac{1}{2} x^{3}-x \\
& 0=8+x^{2} \\
& -8=x^{3} \\
& -2=x \\
& y=\frac{1}{2}(-2)^{2}=2 \\
& \therefore(-2,2) \text { is cosest to }(-4,1)
\end{aligned}
$$

Law of cosines

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

$$
\frac{\text { Law of sines }}{\frac{a}{\sin A}=\frac{b}{\sin B}}
$$

Area of triangle 6

$$
A=\frac{1}{2} b b
$$

OR

$$
A=\frac{1}{2} a b \sin C
$$

