Correct the 40 multiple choice questions from the placement test:

Solutions

16. $\frac{1}{(8x^{2})^{1/3}} = \frac{1}{(4x^{2})^{1/2}} = \frac{1}{(6y^{2})^{1/3}} = \frac{1}{(6y^{2})^{1$

$$\frac{2}{(x+2)} = \frac{1}{(x+2)}$$

$$\frac{(x+2)(x+2)}{(x+2)}$$

$$\frac{(x+2)(x+2)}{(x+2)}$$

$$\frac{(x+2)(x+2)}{(x+2)}$$

$$\frac{(x+2)(x+2)}{(x+2)}$$

Complex Numbers

Look at the following equation...

$$x + 1 = 0$$
, $x \in W$ ———— No Solution over the whole numbers

If we extend to the integers or real number systems then there will be a solution.

What about the equation $x^2 + 1 = 0$, $x \in \mathbb{R}$?

$$x^2 = -1$$

$$x = \sqrt{-1}$$
 ???

13+0

There is no solution over the real number system, therefore we extend into a new number system...the Complex Numbers.

So what about this "i" that appears?

Most Important prinicple in complex number system

What is
$$\sqrt{-36}$$
?
$$\sqrt{36} (-1)$$

$$\sqrt{36}$$

$$+ 6$$

Basic Operations involving Complex Numbers

I. Addition and Subtraction

$$(a+bi)+(c+di)=(a+c)+(b+d)i$$
Collect "real" terms Collect "imaginary" terms

Example:

Express the following complex expression in standard form:

$$2(3-5i)-(7-5i)+2(-1+i)$$
= 6-10i-7+5i-2+2i
= 3-3;

II. Multiplication and Powers

c)
$$2i^{5} - i^{8} + (2i^{3})^{5} \leftarrow (lue)^{7} + 32(i^{3})^{7} \in (lue)^{7} + 32(i^{3})^{7} \in (lue)^{7} + 32(i^{3})^{7} \in (lue)^{7} = (lue)$$

III. Division

Before we can divide we must first review the concept of conjugates...

$$a + bi \Leftrightarrow a - bi$$

Examine what happens when you multiply complex conjugates...

$$(2-5i)(2+5i)$$

Now we are ready to try division...

Example:
a)
$$\frac{2+4i}{1-i} (\frac{1+i}{1+i})$$

$$= \frac{2+6i+4i}{1-i^2}$$

$$= \frac{2+6i+4i}{1-i^2}$$

$$= \frac{2+6i}{1-i^2}$$

$$= \frac{2+6i}{1-i^2}$$

$$= \frac{2+6i}{1-i^2}$$

$$= \frac{2+6i}{1-i^2}$$

Answers to Sample Placement Test.htm