## Warm-Up

SOLUTION!!!

Express the following as a complex number in standard form (a + bi).

$$3i^{5} + (2i^{6})^{5} + \frac{(-1+2i)-3(2+i)}{(-2+i)^{2}}$$

$$= \frac{3(i^{3})^{2}i + 32(i^{2})^{15} + -1 + 3i - 6 - 3i}{4 - 4i + i^{2}}$$

$$= \frac{3(1)(1+32(-1))}{3-4(1)} + \frac{3+4(1)}{3+4(1)}$$

$$= -\frac{800}{25} - \frac{17}{25} + \frac{75}{25}; -\frac{31}{25};$$

$$= -\frac{817}{25} + \frac{44}{25}; -\frac{31}{25};$$

4. e) 
$$2+i\sqrt{5}$$
 (1+3i)  
 $1-3i$  (1+3i)  
=  $2+6i+i\sqrt{5}+3\sqrt{5}$ ;  $2+3\sqrt{5}$ ;  $2+6i+i\sqrt{5}+3\sqrt{5}$ ;  $2+6i+i\sqrt{5}$ ;  $2+6i+i$ 

### Principle of Equality - "Comparison"

- comparison of left side versus right side.
- real parts must equal eachother and the imaginary parts must be equal.

EXAMPLE #1: 
$$3-i+2i=6i-(2x+yi)$$
 Solve for  $x \notin y$ :

$$3+i = 6i-2x-yi$$

$$-2 = -3x$$

$$1=6-4$$

$$1=6-4$$
EXAMPLE #2:  $4i(3x-y)=3-(3-yi)i$ 

$$12xi-4yi=3-3i+yi^2$$

$$12x-4y=-3$$

### Complex Roots

• If it is not possible to factor a quadratic equation and you cannot use the completing the square or quadratic formula because there is a negative under the radical sign......

#### There are no x-intercepts!!!!!!



What happens if I try to use the quadratic formula?

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(+5)}}{2(1)}$$

$$x = \frac{2(1)}{2(1)}$$

$$x = \frac{4 \pm \sqrt{4}}{2(1)}$$

# Homework...

Worksheet

# 5.6,7

# Complex Plane (Argand Diagrams)

We can represent complex numbers in the complex plane.

We use the horizontal axis for the real part and the vertical axis for the

imaginary part.



**Examples:** 

A: 
$$-3 + 2i \Rightarrow (-3, 2)$$

B: 5 - i (5,-1)

Real C: -4 - 6i (-4, -6)

D: 4i (0,4)

Referred to as an ARGAND DIAGRAM

- the magnitude of a complex vector uses the notation |a+bi|where the length is determined by the Pythagorean Theorem

EXAMPLE...



### Polar Coordinate System

Graphing system that plots ordered pairs of the form  $(r, \theta)$ .

- "r" is the absolute value or modulus. The distance from the origin to the point.
- $\theta$  is the angle of rotation from the starting position, referred to as the "pole".
- to locate a point, start with the point O, called the **pole** and a particular ray with its endpoint at O along the **polar axis**.



### **Plotting Polar Coordinates:**

Plot each of the following points:

A 
$$(4, 60^{\circ})$$
 B  $(5, -210^{\circ})$  C  $(-7, 315^{\circ})$  D  $(-3, -150^{\circ})$ 





### Homework...

Assignment - Plotting Polar Coordinates.doc

Worksheet - Plotting Polar Coordinates.doc