c)
$$t_{10} = 16$$
 d) $t_{11} = -48$

$$t_{27} = -128$$

$$t_{11} = \frac{1}{4} \cdot \frac{1}$$

WARM - UP

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Finish the above number sequence!!!

1202

Leonardo Pisano Fibonacci Born 1170 in (probably) Pisa Died 1250 in (possibly) Pisa

His Book:

<u>Liber abaci</u> *The Book of the Abacus*His work introduces the arithmetic and algebra he learned in the Middle East.

Fibonacci introduces the Fibonacci Sequence

Marie and Marthause Bright (Parties Stat)

The Fibonacci Sequence

- Important numerical sequence over 800 years old that was originally developed to predict how many pairs of rabbits there will be if one assumes that each month, each pair produces a new pair of baby rabbits, that then bear again two months later...
- The sequence begins with 1, and each successive number is the sum of the previous two numbers.
- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ...

0+1 1+1 1+2 2+3 3+5 5+8...

Diagonals in Pascal's Triangle

Levels of Differences

The results of subtracting consecutive terms in a sequence are referred to as **Levels of Difference**.

• If the First-level Differences (D₁) result in a common number, the relation is LINEAR

ex: -25, -20, -15, -10, -5, ... $\frac{1}{2}$ $\frac{$

• If the Second-Level Differences (D2) result in a common number, the relation is QUADRATIC

ex: 2, 9, 22, 41, 66, ...

QuadReg $y = ax^2 + bx + c$ a = 3 b = -2 c = 1 c = 1 c = 1 c = 1 c = 1 c = 1

• If the Third-Level Differences (D₃) result in a common number, the relation is CUBIC ex: -4, 7, 40, 107, 220, ...

• If the Forth-Level Differences (D₄) result in a common number, the relation is <u>QUARTIC</u>

ex: 1, 16, 81, 256, 625, 1296, ... D_1 : 15, 65, 175, 369, 671 D_2 : 50, 110, 194, 302 D_3 : 60, 84, 108

D4 94, 54

Creating Equations with the TI-83

1. Determine if the sequence is linear, quadratic, cubic or quartic.

(Using Levels of Difference-on your own paper)

2. Enter the data into Lists: $n \Rightarrow L_1$ $t_n \Rightarrow L_2$

3. Then "Calculate" the regression for the type of function determined by the level of diffences.

Cubic $y = ax^3 + bx^2 + cx + d$

Linear

Can you come up with the general term for each of these??

X	Y1	
- NOTE OF	12.000 15.11000	
X=1		_

X	[Y1]	
7 23 4 5 6 7	311 3135 3144 1231 281	
X=1		