Classifying Systems of Equations:

If a system of linear equations has one or more solutions, the system is said to be a consistent system. If a linear equation has no solution, it is said to be an inconsistent system. $In(ons, skn t \rightarrow sin t)$

2y=2x+14 dependent

If two equations represent the same line, then all points along the line are solutions to the system of equations. In such a case, the system is characterized as a **dependent system**. An **independent system** is one in which the two equations represent different lines.

Three possibilities when solving systems of equations in two variables...

System is consistent.

System is independent.

System is inconsistent.

System is independent.

System is consistent.

System is dependent.

True or False??

A consistent system is a system that always has a unique solution.

A dependent system is a system that has no solution.

If two lines coincide, the system is dependent.

If two lines are parallel, the system is independent.

Inconsistent System

- sometimes there may be no solutions when the lines are parallel.
- indicator is getting 0 = # in your solution.

Solve... y = 3x - 5 & y = 3x + 2Example:

Substitution

Substitution

Substitution

Solution 3x-5=3x12

Dependent System

- sometimes there may be infinitely many solutions when the lines are the same.
- indicator is getting 0 = 0 in your solution.
- must develop a parametric solution.

Example: Solve... 3x - y = 5 & -15 + 9x = 3y

How do I develop a parametric solution??
or even betterWhat is a parametric solution? What is it for??

Example:

Solve...

3x - y = 5

& -15 + 9x = 3y

$$3x-y=5$$

$$9x-3y=15$$

$$9x-3y=15$$

$$0=0 \leftarrow dependent$$
ametric Coldinary

Parametric Solution

> Introduce a Parameter: Let y= t Substitute & Solve For

$$3x - y = 5$$

 $3x - t = 5$
 $3x = 5 + t$
 $x = 5 + t$
 $x = 5 + t$

(stt) Parametric Solution

Possible solutions...

$$\left(\frac{3}{3}, 7\right)$$

$$\frac{t=1}{(3,1)} \left(\frac{2}{3},\frac{7}{3}\right) \left(\frac{1005}{3},\frac{1000}{3}\right)$$

Solve the following system of equations.

$$2x+5y=-1$$

$$-10x-25y=5$$

$$10x+25y=-5$$

$$2x+3y=-5$$

$$10x+25y=-5$$

$$2x+3y=-5$$

$$2x+3y=-5$$

$$2x+3y=-1$$

$$3x+3y=-1$$

$$3x+$$

Dependent Systems:

How many solutions?....

$$3x + 5y = 9$$

$$6x = 18 - 10y$$

$$2x + 3y - 4 = 0$$

$$6y - 8 = -4x$$

Introduction to Matrices

What is a matrix? A matrix is a rectangular arrangement of values inside brackets. The "rectangular arrangement" is made up of rows and columns. We use the number of rows by number of columns to name a matrix. For example, a 3x4 matrix has 3 rows and 4 columns.

Each individual value inside a matrix is called an **element** of the matrix. If we have a matrix named **A**, **A[2,3]** means the individual value located at the cross-section of row 2 and column 3.

Very Important

When we name a matrix the **number of rows ALWAYS comes before the number of columns.** Just think RC.

Examples of matrices...

MATRIX OPERATIONS

Adding & Subtracting Matrices

Must have the same dimension!

$$\begin{pmatrix}
-3 & 5 \\
2 & -4
\end{pmatrix} - \begin{pmatrix}
7 & 0 \\
3 & 4
\end{pmatrix} = \begin{pmatrix}
-10 & 5 \\
-1 & -8
\end{pmatrix}$$

$$2X + \begin{pmatrix}
-3 & 4 \\
5 & 7
\end{pmatrix} = \begin{pmatrix}
2 & -8 \\
3 & -2
\end{pmatrix}$$

$$2X = \begin{pmatrix}
2 & -8 \\
3 & -2
\end{pmatrix} - \begin{pmatrix}
-3 & 4 \\
5 & 7
\end{pmatrix}$$

$$\begin{pmatrix}
1 \\
2
\end{pmatrix}
2X = \begin{pmatrix}
5 & -12 \\
-2 & -9
\end{pmatrix}$$

$$X = \begin{pmatrix}
5 & -12 \\
-2 & -9
\end{pmatrix}$$

$$X = \begin{pmatrix}
5 & -12 \\
-2 & -9
\end{pmatrix}$$

Scalar Multiplication

Multiply through the matrix!

$$\begin{pmatrix} 2 & -1 \\ 0 & -3 \end{pmatrix} + 5W = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

$$5W = \begin{pmatrix} -1 \\ -1 \\ 7 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ 0 & -3 \end{pmatrix}$$

$$5W = \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ 0 & -3 \end{pmatrix}$$

$$W = \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ 0 & -3 \end{pmatrix}$$

$$W = \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ 0 & -3 \end{pmatrix}$$

$$W = \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ 0 & -3 \end{pmatrix}$$

$$W = \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ 0 & -3 \end{pmatrix}$$

$$W = \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ 0 & -3 \end{pmatrix}$$

$$W = \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ 0 & -3 \end{pmatrix}$$

$$W = \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ 0 & -3 \end{pmatrix}$$

$$W = \begin{pmatrix} -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ 0 & -3 \end{pmatrix}$$

Matrix Multiplication

In order to multiply matrices, the number of columns in the 1st matrix must equal the number of rows in the 2nd matrix.

(# rows 1st) x (# columns 2nd) **Product Dimensions:**

Always multiply a row through a column, adding the products as you go.

$$\begin{pmatrix}
2 & 7 \\
3 & 5
\end{pmatrix} \times \begin{pmatrix}
6 & -2 & 0 & -1 \\
7 & 1 & 5 & 4
\end{pmatrix}$$

$$(2 \times 2) \qquad (2 \times 4)$$

Your turn! Given...

Find...

Worksheet - Primary Trig Ratios.doc