Given that $f(x) = -2x^2 + 5x - \sqrt{x}$, determine the value of...

(1)
$$f(4)$$
 (2) $f(\$)$ (3) $f(9+h)$
= $-2(4)+5(4)-\sqrt{4}$ = $-2(4)+5(4)-\sqrt{4}$

Develop the definition of a derivative

The concept of **Derivative** is at the core of Calculus and modern mathematics. The definition of the derivative can be approached in two different ways. One is geometrical (as a slope of a curve) and the other one is physical (as a rate of change).

Definition. Let y = f(x) be a function. The derivative of f is the function whose value at x is the limit

If this limit exists for each x in an open interval I, then we say that f is differentiable on I.

Notation:
$$f'(x) \Leftrightarrow \frac{dy}{dx} \leftarrow \text{Leibniz Notation}$$
"f Prime of χ "
$$f''(x) \Leftrightarrow \frac{d^2y}{dx^2}$$

Examples:

Use the definition of a derivative to differentiate...

(1)
$$f(x) = 2x^2 - 3x + 1$$

(2)
$$y = \sqrt{x+2}$$

Example:

Determine the equation of a tangent drawn to the curve $f(x) = \frac{2}{1-3x}$ at x = 1.

Remember that the equation of a line is found by using the point-slope formula... $y - y_1 = m(x - x_1)$