

1. Solve:
$$\frac{2 \cdot 6^{\pi i_1}}{\log 6} = 18$$
.

2. Which is equivalent to $3 \left[\frac{1}{2} \log_4 A + \log_4 B - \log_4 C \right]$?

(A) $\frac{\log 9 - 1}{\log 6}$

(B) $\frac{\log 9}{\log 6} - 1$

(C) $\frac{\log 18}{\log 12} - 1$

(D) $\frac{\log 18 - 1}{\log 12}$

(D) $\log_4 \left(\frac{B \sqrt{A}}{C} \right)^3$

3. Algebraically solve: $\log_2(x+2) + \frac{1}{2}\log_2(8x^3) = 16^{\frac{1}{2}}$.

4. A truck is purchased for \$51 000 and depreciates by 23% annually. At the same time a minivan is purchased for \$38 000 and depreciates by 17% annually. Write an equation to model this situation and use it to determine when the two vehicles will be of equal value.

Truck

$$t \mid 0$$
 $V \mid S_{1000} \mid (0.71)^{t}$
 $V \mid S_{1000} \mid (0.71)^{t}$

Logarithmic Scales

I. Richter Scale: Severity of Earthquakes

$$R = \log_{10} \left(\frac{I}{I_o} \right)$$

- R magnitude of an earthquake
- I Intensity of the earthquake
 (amplitude of the wave on a seismograph)
- I_o Intensity of the reference earthquake
 (1 micron) (1 micron = 10⁻⁴ cm)

Charles F. Richter 1900-1985

The intensity of the earthquake is measured by the amplitude of a seismograph reading taken 100 km from the epicenter of the earthquake.

This implies that an earthquake that reads a 5 on the Richter scale would be 10 times more intense than an earthquake that reads a 4 on the Richter Scale. (The scale jumps by powers of 10)

How many times more intense would an earthquake that reads an 8 on the Richter Scale be than a 5 on the Richter Scale?

If the intensity of earthquake A is 5 and the intensity of earthquake B is 650, what is the difference in their magnitudes as measured by the Richter Scale?

The 1985 Mexico City earthquake had a magnitude of 8.1 on the Richter scale and the 1976 Tangshan earthquake was 1.26 as intense. What was the magnitude of the Tangshan earthquake on the Richter Scale?

Sound

The loudness of a sound (measured in decibels) also uses a logarithmic scale.

 $D = 10\log_{10}$

D - Decibels

I - Intensity of a sound

 I_o - Intensity of a reference sound (10⁻¹²)

Works In

Example:

If one siren produces 100 dB of noise, how much noise is produced by three of these sirens used simultaneously at the same location?

Practice problems...

Page 187 - 188 #36 - 43