Absolute Maxima/Minima

A function f has an absolute (or global) maximum at ¢

if f(c)> f(x) for all x in the domain D of .
« The number f(c) is called the maximum value of fon D.

A function f has an absolute (or global) minimum at ¢

if f(c) < f(x) for all x in the domain D of f.
« The number f(c) is called the minimum value of fon D.
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[3] The Extreme Valve Theorem If f ion a closed interval [a, b]. then
[ attains an absolute maximum value f(c¢) and an absolute minimum value
f(d) at some numbers ¢ and d in [a, b].

Here are a couple of examples to reinforce that the
function must be continuous over aclosed interval.
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This function has minimum value This continuous function g has

f(2) =0, but no maximum value. Nno maximum or minimum.



How do we find extreme values?

(4] Fermat’s Theorem If f has a local maximum or minimum at ¢, and if_f'(c)
exists, then f () = 0.
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The converse of the theorem is false in general:
e Look at f{x) = x3

f(x\: Q d 3
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There can also be an extreme value wher f'(¢)
does not exist.

Look at the function f(x)=|x

y=|x|
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[5] Definition A critical number of a function f is a number ¢ in the domain
of f such that either f'(¢) = 0 or f'(¢) does not exist.

Example: . 3
Find the critical values of f'(x) = x° (4 — x)
and determine all intervals of increase and

decrease as well as any local extrema.
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How do we determine abhsolute maximum and minmum values?

The Closed Interval Methed To find the absolute maximum and minimum values
of a continuous function f on a closed interval [a, b]:

1. Find the values of f at the critical numbers of f in (a, b).
2. Find the values of f at the endpoints of the interval.

3. The largest of the values from Steps 1 and 2 is the absolute maximum
value; the smallest of these values is the absolute minimum value.

Example:

Given the function...
f(x)=3x"-16x" +18x* ., -1<x<4
T~ o

Determine the absolute maximum and minimum
. — C———)
values of the function.

E W)= 12293 4306
0= 12x (W= fx+3)
0= 12x( K—‘s)(\—\)
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