
Code Modules

 The code module contains no form definitions at all. It contains procedures and

declarations that solve particular problems. These modules are created and added to the list of

modules in the Project window by clicking on Project on the menu bar and then Add Module.

This module contains code used as a common resource for forms. It contains code shared by

more than one form and ensures that the variables declared in the code module are available for

use by all other modules including form modules.

The Scope of Variables

 A variable’s scope is determined by its: visibility and lifetime. Visibility is a question of

the number of procedures, forms, and modules that can use the variable.

Variable Types

Local Declared by the Dim statement inside event procedures.

 Can be used only by that one event.

 Value is lost when program again enters same event procedure.

Static A kind of local variable.

 Can be used only by one event.

 Value is not lost when program again enters same event procedure.

 Declared by Static statement inside event procedure.

 eg. Static ClickCount as Integer

Global Used to share values among procedures.

 2 Types

 Global within a form module

 Can be used by all events on the same form.

 Declared by the Dim statement placed in the General Declarations section of the

form.

 Global within all forms and all procedures in project
 Can be used by all events on all forms.

 Declared by the Public keyword in the General Declarations section of the Code

Module.

 eg. Public ClickCount as Integer

Exercise to Show how Variable Types Work

1. Place the following on a form in a new project:

 a label named lblDisplay. Delete the caption

 a command button named btnCount. Make Count the caption.

 a command button named btnExit. Make Exit the caption.

2. Code for the btnCount button is:

Dim x as integer

x = x + 1

lblDisplay.text = x

3. Run the program and click on Count several times. Why does the value not increase?

4. Change the code in the btnCount button so the first line is:

Static x as integer

5. Run the program again and click Count several times. What has changed?

6. Add another command button to your form named Count 2. Change the caption to

Count 2. Put exactly the same code in this event procedure as in Count. What happens

if you click several times on one button and then several times on the other?

7. Add another command button named Clear, caption Clear. Code for this button is:

lblDisplay.Caption = “”

8. Now delete the Static lines from both the command buttons. Add this line for the under

this section of the form:

 Public class form1

Dim x as Integer

9. Run the program and hit each of the Count buttons several times. Watch the result.

10 Add a new form to your project. Put a Back button on this form with code to take you

back to Form 1. (Me.Hide() form1.show()) Put a Continue button on Form 1 with code

to take you to Form 2. (Me.Hide() form2.show) Put a Count 3 button on Form 2. The

code for this button should match the code for the Count Button on Form 1. Then run

the program and try all buttons. Is the value of X passed to Form 2?

10. Now delete the Dim statement from the General Declarations area of the form.

11. Add a Code Module. Put this line of code in the General Declarations section of the

Code Module. Public x as Integer

Random Numbers

Randomize—Randomize reseeds the random number generator. In other words, it sets up a

different sequence of random numbers. This command must be placed before you attempt to

come up with a random number.

Rnd—Rnd causes the computer to choose a random number between 0 and 1. This then has to

be changed slightly to get a random number in the range you wish.

Set up a form with the following command buttons—List Numbers and Exit.

Code for the List Numbers button
Dim x as Single, r as Single

Randomize

For x = 1 to 10

 r = rnd ()

 lstRandom.Items.Add(r)

Next x

Delete the Randomize statement, run the program a few times, and see what happens.

Put the Randomize statement back in the program.

Then change the r = rnd statement to each of the following in turn, run the program, and note the

result.

r = r * 10

r = Int(rnd * 10)

r = Int(rnd * 10) +1

r = Int(rnd * 6) +1

r = Int(rnd * 3) +5

Programming Problems

Now try the following :

1. Similar to the example above, create a program to list a series of 15 random numbers to

satisfy each of the following:

(a) from 0 to 5 inclusive

(b) from 1 to 5 inclusive

(c) from 1 to 6 inclusive

(d) from 0 to 255 inclusive

(e) a 1 or a 2

(f) from 25 to 50 inclusive

2. (a) Create a program to generate a series of 100 random numbers between 1 and 4

inclusive. Put these in a listbox.

(b) Revise the above program to keep track of how many times each of the 1, 2, 3, or

4 is generated and print the results in the listbox.

Inserting pictures through code

Pictures should be placed in an imagebox. They should be stored in the same folder as your

program. You can direct the program to look in this folder by adding these lines of code to the

FORM…LOAD procedure of your first form.

ChDrive “H:\”

Then place this line of code to add the picture at the point in the program when you wish to do

so.
picCoin.Load("Head.jpg")
To erase a picture, use this line of code

picCoin.Load(“”)

PROGRAMMING PROBLEMS

3. Create a Game of “Guess My Number – 1 to 100.” The computer will come up with a

random number in this range. The user will guess until he gets the answer. After each

guess, the computer will prompt him with “Higher” or “Lower.” It will also display the

number of guesses.

4. Create a program to simulate the flipping of a coin. Make as realistic a game as possible

of this by letting the player choose which we wants and telling him the results. Provide a

“Play again” button that would clear the first result and allow him to choose again. Keep

track of correct and incorrect responses and display the results in the label.

5. Create a program to simulate the rolling of a pair of dice.

6. Suppose you have a younger brother or sister who is just learning the times tables. Make

a game that will test him by asking him questions involving any two numbers from 1 to

12 being multiplied together. Your program should tell him whether his answer is right

or wrong. It should also keep track of the number correct and the number incorrect and

display that information in labels.

