Now let's make things a bit more complicated...
Remember ALL of the rules!

$$
\begin{aligned}
& f(x)=\sqrt{x^{2}-\sqrt{3 x+\sqrt{x^{4}+9}}} \\
& f(x)=\left[x^{2}-\left[3 x+\left(x^{4}+9\right)^{1 / 2}\right]^{1 / 2}\right]^{1 / 2} \\
& \frac{1}{2}-\frac{2}{2} \\
& f^{\prime}(x)=\frac{1}{2}\left[x^{2}-\left(3 x+\left(x^{4}+9\right)^{1 / 2}\right]^{1 / 2}\right]^{-1 / 2}\left[2 x-\frac{1}{2}\left[3 x+\left(x^{4}+9\right)^{1 / 2}\right]^{-1 / 2}\right. \\
& \left.\cdot\left[3+\frac{1}{2}\left(x^{4}+9\right)^{-1 / 2}\left(4 x^{3}\right)\right]\right] \\
& f(x)=\frac{\left(x^{3}-5\right)^{4} \sqrt{9-x^{2}}}{\frac{9}{x^{3}}\left(5 x^{7}+x^{-3}\right)^{-2}}\left(5 x^{2}+x^{-3}\right)^{2}\left(9 x^{-3}\right)^{-1} \\
& 9 x-3 \\
& f^{\prime}(x)=\left[4\left(x^{3}-5\right)^{3}\left(3 x^{2}\right)\left(9-x^{2}\right)^{1 / 2}+\left(x^{3}-5\right)^{4}\left[\frac{1}{2}\left(9-x^{2}\right)^{-1 / 2}(-2 x)\right]\right] . \\
& {\left[9 x^{-3}\left(5 x^{7}+x^{-3}\right)^{-2}\right]=\left[\left(x^{3}-5\right)^{4} \sqrt{9-x^{2}}\right]\left[\left(-27 x^{-4}\right)\left(5 x^{2}+x^{-3}\right)^{-2}+\right.} \\
& \frac{\left.\left(9 x^{-3}\right)\left[-2\left(5 x^{7}+x^{-3}\right)^{-3}\left(35 x^{6}-x^{-x}\right)\right]\right]}{2} \\
& {\left[\frac{9}{x^{3}}\left(5 x^{7}+x^{-3}\right)^{-2}\right]^{2}}
\end{aligned}
$$

$$
\begin{array}{ll}
y=\sqrt[3]{x^{3}+\sqrt{6 x-3}} & (B / 0 B)^{n} \\
y=\left[x^{3}+(6 x-3)^{1 / 2}\right. & ]^{1 / 3} \quad n(B 10 B)^{n-1}\left(B 10 B^{\prime}\right) \\
y^{\prime}=\frac{1}{3}\left[x^{3}+(6 x-3)^{-2 / 2}\right]^{-2 / 3}\left[3 x^{2}+\frac{1}{2}(6 x-3)^{-1 / 2}(6)\right]
\end{array}
$$

$$
\begin{aligned}
& f(x)=\sqrt[4]{\frac{\left(x^{5}-1\right)^{-2}+3 x^{7}}{x \sqrt{3 x-5}}}(\ldots)^{1 / 4} \\
& f^{\prime}(x)=\frac{1}{4}\left[\frac{\left(x^{5}-1\right)^{-2}+3 x^{7}}{x(3 x-5)^{-3 / 2}}\right]^{x(4}\left[\left[-2\left(x^{5}-1\right)^{-3}\left(5 x^{x}\right)+21 x^{6}\right]\right. \\
& \\
& (x \sqrt{3 x-5}) \\
& y=\left(x^{4}+5 x \sqrt{x+\sqrt[3]{x^{3}+8}}\right)^{4}
\end{aligned}
$$

