Implicit Differentiation

- Sometimes an equation only implicitly defines y as a function (or functions) of x.
- Examples
 - $x^2 + y^2 = 25$
 - $x^3 + y^3 = 6xy$

(a) $x^2 + y^2 = 25$

• The first equation could easily be rearranged for y = ...

(b) $f(x) = \sqrt{25 - x^2}$

(c) $g(x) = -\sqrt{25 - x^2}$

■ The other sample equation

$$x^3 + y^3 = 6xy$$

- $\underline{\operatorname{can}}$ be solved for y but
- the results are very <u>complicated</u>.

FIGURE 2 The folium of Descartes

$$y = x^{2}$$

$$dy = (x)^{2}$$

$$dy = (x)^{2}$$

$$dy = x^{2}$$

Implicit Differentiation

- There is a way called *implicit differentiation* to find *dy/dx* <u>without</u> solving for *y*:
 - First <u>differentiate</u> both sides of the equation with respect to *x*;
 - Then solve the resulting equation for y'.
- We will always <u>assume</u> that the given equation does indeed define y as a differentiable function of x.

Example

- For the circle $x^2 + y^2 = 25$, find
 - a) dy/dx
 - b) an equation of the tangent at the point (3, 4).

Solution:

Start by differentiating both sides of the equation:

$$\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(25)$$

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = 0$$

Remembering that *y* is a function of *x* and using the Chain Rule, we have

$$\frac{d}{dx}(y^2) = \frac{d}{dy}(y^2)\frac{dy}{dx} = 2y\frac{dy}{dx}$$

Thus...
$$2x + 2y \frac{dy}{dx} = 0$$
Solving for $\frac{dy}{dx}$... $\frac{dy}{dx} = -\frac{x}{y}$

Therefore at the point (3,4) the equation of the tangent would be...

$$y - 4 = -\frac{3}{4}(x - 3)$$
 or $3x + 4y = 25$

Same Example Revisited

- Since it is easy to solve this equation for y, we
 - do so, and then
 - find the equation of the tangent line by earlier methods, and then
 - compare the result with our preceding answer:

Solution

- Solving the equation gives $y = \pm \sqrt{25 x^2}$ as before.
- The point (3, 4) lies on the <u>upper</u> semicircle $y = \sqrt{25 x^2}$ and so we consider the function $f(x) = \sqrt{25 x^2}$

Differentiate *f*:

$$f'(x) = \frac{1}{2}(25 - x^2)^{-1/2} \frac{d}{dx} (25 - x^2)$$
$$= \frac{1}{2}(25 - x^2)^{-1/2}(-2x) = -\frac{x}{\sqrt{25 - x^2}}$$

$$f'(3) = -\frac{3}{\sqrt{25 - 3^2}} = -\frac{3}{4}$$

Solution (cont'd)

So
$$f'(3) = -\frac{3}{\sqrt{25-3^2}} = -\frac{3}{4}$$

leading to the same equation

$$3x + 4y = 25$$

for the tangent that we obtained earlier.

Note that although this problem <u>could</u> be done both ways, implicit differentiation was easier!

Example

- For the folium of Descartes $x^3 + y^3 = 6xy$,
 - Find y'
 - \blacksquare Find the tangent to the curve at the point (3, 3)
 - At what points on the curve is the tangent line horizontal?

