Find + Lo 35d derivative:

$$f(x) = \frac{3}{\sqrt{5-x^2}} = \frac{3(5-x^2)^{\frac{1}{2}}}{\sqrt{5-x^2}} = \frac{3(5-x^2)^{\frac{$$

Rectilinear Motion and Derivatives

Any motion along a straight line is called rectilinear motion.

Displacement - Velocity - Acceleration

't">time

If s represents a function that measures displacement, then <u>ds</u> would represent???

then
$$\frac{ds}{dt}$$
 would represent ??? $velocity = \frac{ds}{dt}$

The rate of change of the velocity...ie $\frac{\Delta \mathbf{v}}{\Delta t}$ would represent?? $\frac{\partial \mathbf{v}}{\partial t}$

So it follows that the second derivative of displacement will give us acceleration:

$$a = \frac{d^2s}{dt^2}$$
 ----- Notice the notation

Example

If the displacement (in metres) at time t (in seconds) of an object is given by

$$s = 4t^3 + 7t^2 - 2t,$$

find the acceleration at time t = 10.

$$S'=12t^2+14t$$
 (velocity)
 $S''=24t+14$ (accel.)
 $S''(10)=24(10)+14$
 $=254m/s^2$

Example:

- The position of a particle is given by the equation $s = f(t) = t^3 6t^2 + 9t$, where t is measured in seconds and s in meters.
 - a) Find the velocity at time t.
 - b) What is the velocity after 2 s? After 4 s?
 - c) When is the particle at rest?
 - d) When is the particle moving forward (that is, in the positive direction)?
 - e) Draw a diagram to represent the motion of the particle.
 - f) Find the total distance traveled by the particle during the first five seconds.
 - $_{\rm g)}$ Find the acceleration at time t and after 4 s.
 - h) Graph the position, velocity, and acceleration functions for $0 \le t \le 5$.
 - i) When is the particle speeding up? When is it slowing down?

$s = f(t) = t^3 - 6t^2 + 9t$

Find the velocity at time t.

What is the velocity after 2 s? After 4 s?

$$9+(6)=3(2)^2-12(2)+9$$

 $=-3m/2$

$$S'(a)=3(a)^2-12(a)+9$$
 $S'(x)=3(x)^2-12(x)+9$
=-3 m/s = 9 m/s

 $s = f(t) = t^3 - 6t^2 + 9t$

c) When is the particle at rest?

$$\frac{3t^{2}-12t+9=0}{3}$$

$$t^{2}-14t+3=0$$

$$(t-3)(t-1)=0$$

$$t=3ser or t=1sec$$

velocity 70

d) When is the particle moving forward (that is, in the positive direction)?

Draw a diagram to represent the motion of the particle.

 $s = f(t) = t^3 - 6t^2 + 9t$

f) Find the total distance traveled by the particle during the first five seconds.

 $_{\rm g)}$ Find the acceleration at time t and after 4 s.

$$S'' = 6t - 12$$

$$S''(t) = 6(t) - 12$$

$$= 12 m/s^{2}$$

h) Graph the position, velocity, and acceleration functions for $0 \le t \le 5$.

When is the particle speeding up? When is it slowing down? $s = f(t) = \hat{t}^3 - 6t^2 + 9t$

h) Graph the position, velocity, and acceleration functions for $0 \le t \le 5$.

When is the particle speeding up? When is it slowing down?