
Conditional Statements

If . . . Then Statements

If . . . Then Statements allow you to test for a certain condition to be true. If that condition is

true, the program code will do whatever comes after the command Then. The conditional

operators are:

= equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

<> not equal to

There are several ways to write If . . . Then statements.

Some Examples

Single-line Form

If Mark > 49 Then lblPass.visible = True

If Mark >=75 AND Mark <101 Then lblHonors.visible = True

If Mark < 0 OR Mark > 100 Then lblMark.Text = “This is not a valid mark.”

AND requires both conditions to be true.

OR requires one or the other of the conditions to be true.

Block Form—This is the preferred format for Visual Basic

If Mark> 49 Then

 lblPass.visible=True

End If

If Mark>74 Then

lblHonours.visible = True

ElseIf Mark < 50 Then

 lblFail.visible = True

Else

 lblPass.visible = True

End If

An Example Program using Conditional Statements

Step 1—Design a form similar to the one above:

You should have 2 labels (for the words written and to display the answer in the middle), 1

textbox (to enter the mark), and 2 command buttons.

Step 2—Set the Properties as follows:

Form Name

Text

frmMark

Classify Your Mark

Label1 Text

Font

Enter Your Mark

Bold, 14

TextBox Name

Text

txtMark

(delete text)

Label2 Name

Text

Autosize

Borderstyle

Font

lblType

(delete text)

True

1—Fixed Single

Bold, 24

Command1 Name

Text

btnClassify

Classify

Command2 Name

Text

btnExit

Exit

Step 3—Write the Code

Private Sub cmdClassify_Click()

 Dim Mark As Integer

 Mark = Val(txtMark.Text)

 If Mark >= 75 Then

 lblType.ForeColor = color.blue

 lblType.Text = "Honours"

 ElseIf Mark > 49 And Mark < 75 Then

 lblType.ForeColor = color.green

 lblType.Text = "Pass"

 Else

 lblType.ForeColor = color.red

 lblType.Text = "Fail"

 End If

 txtMark.Text = ""

 txtMark.Focus

End Sub

Private Sub cmdExit_Click()

 Me.Close

End Sub

Run Your Project—Try entering marks that fit each of the classifications.

Add a Clear Button—Add a Clear command button and set the properties and write the code

similar to the last project.

Save Your Project—Create a folder called Marks within your folder. Save the form and

project files in this folder.

Explanation of Code

 The first two lines declare the variable Mark and obtain its value from the textbox.

 Pay particular attention to the If…Then section of code. If the first condition is met, the 2

lines of code that come after the Then are carried out.

 If the mark is greater than 49 and also less than 75, the 2 lines of code after that statement are

carried out.

 If any number is entered that does not meet either of those conditions, then the code under

Else is carried out.

 An End If statement is required to state that the If…Then section of code is finished.

 txtMark.Text =”” clears the textbox.

 txtMark. Focus sets the focus to the textbox. In other words, the cursor will be blinking in

that textbox ready for you to enter another mark.

 An If…Then section of code could contain many ElseIf statements, but the last one should

always be just Else as that is the last possibility left so the condition does not have to be

stated.

 ElseIf Mark > 49 And Mark < 75 Then

requires that both conditions be true in order for the code to be carried out because of the

And.

 A statement such as If Number >100 Or Number < 0 Then would test for one condition or

the other to be met; thus, this line of code would check to see if a number is not within the

normal Mark range of 0 to 100.

Additional Ways to Control Focus
Once a value is entered in a textbox, a user should be able to move on to the next event in any of

three ways. These include:

 Pressing the Tab key

 Clicking on the next box

 Pressing the Enter key

To allow users to press the tab key, you need to change a property in the Properties window.

You will change this property for txtAge, cmdClassify, and cmdClear as follows:

 Select txtAge. Set the TabIndex property to 0.

 Select btnClassify. Set the TabIndex property to 1.

 Select btnClear. Set the TabIndex property to 2.

To allow users to hit the enter key after typing a number in the textbox, you need to enter this

code in the Keypress event of txtAge.

 If KeyAscii = 13 Then

 btnClassify. Focus

 End If

13 is the ASCII code for the Enter key. Therefore, if this is hit, focus shifts to btnClassify.

PROGRAMMING PROBLEMS

1. Create a program that will enable you to enter any number. The computer will then

display TRUE in a label if the number is between –30 and +30 inclusive or FALSE if it is

not. Hint: You will need to treat the words “TRUE” and “FALSE” as strings. String

values must be enclosed in quotes.

2. The Cereal Program.

This program will tell you whether you have to buy cereal if you are getting low. Use 2

textboxes, 1 for the number of bowls eaten, and 1 for the number of boxes bought. You

can eat 10 bowls for every 1 box. Assume you will eat the same numbers of bowls next

week as this week.

You should have 3 command buttons: 1 for Check Supply, 1 for Clear, and 1 for Quit.

At any time, if the user clicks Check Supply, a message will appear either “BUY MORE”

or “YOU HAVE ENOUGH”.

3. The Movie Theatre Problem
Create a program that uses a textbox to enter a person’s age. If the person is 12 or older,

they pay the adult fee at the movie theatre, $6. If the person is younger than 12, the fee is

$4. Display the label Adult Fee $6 or Child Fee $4 based on the value entered.

Use the Visible property to turn the labels on and off. use a button with the caption Test

to test the age. Include a Clear button to clear the textbox and turn off the labels.

Divisibility
Visual Basic provides an easy way to tell whether one number is evenly divisible by another, and

if not to tell what the remainder is. The Mod operator divides one number by another and

returns just the remainder of that division as its result.

Eg.

5 Mod 3 is 2

21 Mod 7 is 0

25 Mod 2 is 1

24 Mod 5 is 4

When the Mod operator returns 0, the first number is evenly divisible by the second.

Eg.
Remainder = Number Mod 10

If Reminder = 0 Then

 lblAnswer.Text = “The number is evenly divisible by 10.”

Else

 lblAnswer.Text = “The remainder is “ Remainder

End If

4. Create a program to allow you to enter a number. The computer will then display

whether that number is EVEN or ODD. Hint: What is it about a number that makes it

even?

5. Create a payroll application that calculates gross weekly wages (before taxes) given the

hours worked and the hourly rate. Then modify the program so that you can choose by

way of option buttons whether the employee is exempt from taxes or not. If not exempt,

deduct 18% for taxes. If exempt, deduct no taxes.

6. The Printing Place has different printing prices based on the number of copies to be

printed:

0 – 499 copies $0.30 per copy

500 – 749 copies $0.28 per copy

750 – 999 copies $0.27 per copy

1000 copies or more $0.25 per copy

Create a Printing Prices application that asks the user for the number of copies and then

calculates the total price.

7. Create a Sandwich Order application that allows the user to generate a sandwich order

that includes the size of the sandwich (small or large) and the fixings for the sandwich

(lettuce, tomato, onion, mustard, mayonnaise, cheese). A small sandwich is $2.50 and a

large sandwich is $4.00. Mustard and mayonnaise are free, lettuce and onion are $0.10

each, tomato is $0.25, and cheese if $0.50. Use option buttons for the size and

checkboxes for the fixings. Calculate the total price of the sandwich.

8. Speedy Overnight Delivery service does not accept packages heavier than 27 kilograms

or larger than 0.1 cubic meters (100,000 cubic centimeters). Create a Package Check

application that asks the user to input the weight of a package and its length, width, and

height in centimeters, and displays an appropriate message if the package does not meet

the requirements (eg. Too large, too heavy, or both).

Simple Menus
To create a menu, first select the Form, then hit the menu Editor button. In the Caption box,

enter what you want the menu item to show, inserting & before the letter you wish to underline.

 eg. &Calculate

Hitting Alt and the underlined character will activate the menu. You can also do this when

captioning command buttons.

Menu items are named with the prefix mnu. eg. mnuCalculate

After entering the caption and name for the first one, hit next. Continue in the same manner until

finished, and then click OK.

 The Garden Fencing Problem—Multiple Forms.
3 Forms frmTitle (shown below)

 frmRect (on next page)

 frmRound (not shown—make similar to frmRect)

Set the Name property of the form to frmTitle.

The picture is placed in an imagebox. To do this, set the Picture property of the imagebox. You

should find graphics files on the internet.

The Option buttons must be placed in a Group Box. First draw a group box and Set the Text

property to Style of Fence. Then click and drag 2 option buttons inside the Group Box.

Note: You cannot double click to put an object inside a frame. Name the first one radRect with

the Text of Rectangle. Name the second one radRound with the Text of Round.

Create two new forms using the add form button. Name one frmRound and the other frmRect.

You navigate between with forms with the show and hide methods as shown in the code for the

command buttons. For example, the Continue button should take you to either frmRect or

frmRound depending on which option button you have checked.

Me.Hide()

frmRound.show() frmRect.show()

FrmRect - 1

Private Sub cmdBack_Click()

 frmRect.Hide

 frmTitle.Show

End Sub

Private Sub cmdCalculate_Click()

Dim Length As Single, Width As Single, Cost As Single

 Dim Answer As Single

 Length = Val(txtLength)

 Width = Val(txtWidth)

 Cost = Val(txtCost)

 Answer = (Length * 2) + (Width * 2) * Cost / 8

 lblAnswer = Answer

 cmdClear.SetFocus

End Sub

Private Sub cmdClear_Click()

 txtLength = ""

 txtWidth = ""

 txtCost = ""

 lblAnswer = ""

 txtLength.SetFocus

 End Sub

Private Sub txtCost_KeyPress(KeyAscii As Integer)

 If KeyAscii = 13 Then

 cmdCalculate.SetFocus

 End If

End Sub

Private Sub txtLength_KeyPress(KeyAscii As Integer)

 If KeyAscii = 13 Then

 txtWidth.SetFocus

 End If

End Sub

Private Sub txtWidth_KeyPress(KeyAscii As Integer)

If KeyAscii = 13 Then

 txtCost.SetFocus

 End If

End Sub

FrmTitle – 1

Private Sub cmdContinue_Click()

 If optRound.Value = True Then

 frmTitle.Hide

 frmRound.Show

 Else

 frmTitle.Hide

 frmRect.Show

 End If

End Sub

Private Sub cmdExit_Click()

 End

End Sub

You are to design a form for frmRound and write the appropriate code. Think about what

values the user would have to enter in order for the program to be able to calculate the answer.

More Visual Basic Tips

Comments (also known as Remarks) – are notes that explain the purpose of statements or

sections of code. Although remarks are part of an application’s code, they are ignored by the

compiler. They are intended for the programmer or others who might read the application’s code.

A comment must begin with either an apostrophe (‘) or the REM keyword. When a program

runs, the computer ignores comments. You should always add descriptive comments to your

code.

An example of comments:

‘Convert the values in the box to number,

‘and calculate the gross pay.

All programs should contain the following information as a comment in the code:

 Name

 Date

 Course

 Title

 Description

Creating Menus

When creating a menu we use the menustrip

control. Type all the Names and submenu names into the box that say Type Here.

Shortcut Keys

These are the keys you need to press in order for an action to occur. Shortcut keys usually

use the alt, ctrl or shift in combination with a letter.

Some of the more common shortcut keys are:

Ctrl + S Save

Ctrl + P Print

Ctrl + C Copy

Ctrl + X Cut

Ctrl + V or Shift + Insert Paste

Separator Bars

A separator bar is a horizontal bar used to separate groups of commands on a

menu.

You can insert a separator bar into a menu in either of the following way:

 Right click an existing menu item. On the pop-up menu that appears, select

Insert, and then select Separator. A separator bar will be inserted above the

menu item.

 Type a hyphen (-) as a menu item’s Text property.

Here is the code used in the background of the buttons:
Public Class frmMenu

 Private Sub ExitToolStripMenuItem_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ExitToolStripMenuItem.Click

 Me.Close()

 End Sub

 Private Sub AboutToolStripMenuItem_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles AboutToolStripMenuItem.Click

 Me.Hide()

 frmAbout.Show()

 End Sub

 Private Sub AddToolStripMenuItem_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles AddToolStripMenuItem.Click

 Dim Number1 As Single

 Dim Number2 As Single

 Dim Answer As Single

 Number1 = Val(txtNumber1.Text)

 Number2 = Val(txtNumber2.Text)

 Answer = Number1 + Number2

 lblAnswer.Text = Answer

 End Sub

 Private Sub HelpToolStripMenuItem_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles HelpToolStripMenuItem.Click

 End Sub

End Class

