Wednesday, October 17/12 Physics 122/121

- 1. Questions re Relative Motion?
- 2. Test Torque and Relative Velocity Thursday
- 3. Review: Momentum and Impulse
- 4. Conservation of Momentum
- 5. Types of Collisions/Explosions
- 6. 1D Collisions/Explosions Stopped Here P6 1,3,5,7,
- 7. Handout 1D Collisions Stopped Here P1
- 8. 2D Collisions/Explosion
- 9. Lab
- 10. Elastic and Inelastic Collisions (1D)

Boat Simulation:

http://www.physicsclassroom.com/shwave/rboat.cfm Pass In: #4-9 (4Ds Late)


```
Torque Problems
```

Handout - Torque

Textbook - Page 501 #31 Page 529 #27

Textbook - Page 501 #33 (a) Page 529 #28 (a)

Handout - More Torque Problems (3)

Relative Velocity

Handouts (3)

Physics 20 Chapter 2 - Worksheet (2nd page of Relative Motion review)

Level 1 -> #4 c, d

 $\#4d = > 1.5 \times 10^2 \text{ km/h}, 21^{\circ} \text{ S of W}$

Example: When a car of mass 2.0×10^3 kg moving at 9.0 m/s collides <u>head on</u> with a second car having a mass of 1.5×10^3 kg, the cars lock and come to rest at the point of collision. What was the velocity of the second car before the collision?

Example: A 6500 kg train travelling at 2.5 m/s collides with a stationary 8000 kg train. If they interlock upon collision, find their velocity after the collision.

Example: A shell having a mass of 25.0 kg is fired horizontally eastward from a cannon with a velocity of 500 m/s. If the mass of the cannon is 1000 kg, what is the magnitude and direction of the recoil velocity?