Chapter 9 Review

Page 376

Understanding Concepts

- 1. State the number of significant digits in each of the following values.
 - (a) 10.2 km
 - (b) 0.02 m
 - (c) 5.0 cm
- 2. State, in your own words, the rule for determining the number of digits allowed in an answer calculated by multiplying two measured values.
- 3. If metres per second, m/s, is the unit of measure of a

 - (a) what is the defining equation for the value?(b) what evidence is collected to calculate the value?
 - (c) what labels are on the axes of the graph used to present the evidence?
 - (d) what does the slope of this graph yield?

Applying Inquiry Skills

7. Percy Williams is the only Canadian athlete to have ever won gold Olympic medals in both the 100-m and the 200-m sprints. He accomplished this amaz-

ing feat in the 1928 Amsterdam Olympics. Calculate the missing quantities in Table 1. Show your work.

Table 1	Percy Williams' Gold Medal Performances		
Average (m/s)	speed	Distance (m)	Time (s)
(a)		100	10.8
9.17		200	(b)

8. In the 1999 World Solar Car Challenge, the Queen's University *Radiance* car came second, completing the 2998.7-km course across Australia in a time of 41.58 h. What was the average speed of the Radiance (Figure 1)?

- 9. A car is moving at a constant 88 km/h when a dog suddenly appears on the road ahead. The driver immediately brakes to avoid hitting the dog.
 - (a) Convert 88 km/h into metres per second.
 - (b) If the reaction time of the driver is 0.2 s, how far has the car moved by the time the driver just touches the brake pedal?

- 10. In 1979, Bryan Allen pedalled the Gossamer Albatross aircraft 35 km across the English Channel in a time of 169 min (Figure 2).
 - (a) Calculate the average speed of the aircraft.
 - (b) During his famous flight, Allen had to battle a headwind that slowed him down. With no wind, he is capable of pedalling at a constant rate to keep the plane flying at 19 km/h. How long would the crossing have taken flying at 19 km/h?

12. Complete the Analysis and Evaluation in the following lab report.

Question

What is Heather's average swimming speed over 50 m?

Several of Heather's teammates are positioned every 10.0 m with stopwatches. All teammates start their stopwatches when Heather dives into the pool and each stops their watch when Heather reaches their assigned distance.

Evidence

Ta	ble 2	Heather's	Swimming	Record

Distance (m)	Time (s)	
0.0	0.0	
10.0	4.1	
20.0	9.9	
30.0	15.9	
40.0	19.5	
50.0	25.2	

Analysis and Evaluation

- (a) Plot a distance-time graph of Heather's swim.(b) Calculate the slope of the best-fit straight line
- and answer the Ouestion.

Making Connections

- 14. Cell phone technology has developed to the point that good quality units are readily available and affordable.
 - (a) What is a significant benefit of having a cell phone in a vehicle?
 - (b) What are some risks created when someone uses a cell phone while driving a vehicle?
 - (c) It takes about 5.0 s to dial a number on a cell phone. How far would a vehicle travel while the number is being dialed, if the vehicle is moving at a constant speed of 60 km/h?
 - (d) What can you do to reduce the risks when cell phones are used in vehicles?