
COMPUTER SCIENCE 110 OUTLINE, 2012-2013 K. MACDONALD

This course serves as an introductory course in computer programming using Visual Basic

Express 2010 that should prepare students to take further programming courses in high school,

university, or community college and to make an informed career choice in this area. Students

will learn to create simple Windows programs.

Outline

Topics

Visual Basic Interface

Controls

Toolbox

Properties

Flow Chart

Variables

Data Types

Conditional Statements

Multiple Forms

Writing Expressions

Debugging

Documentation

Animated Objects

Sound

EVALUATION
Tests

3 Minor Projects

Major Project during last 3 weeks

Final Mark
Average of Tests ... 20%

Minor Projects ... 30%

Final Project .. 25%

Class Mark...10%

Daily Assignments...15%

Visual Basic

Visual Basic is used to create applications for Microsoft Windows. It includes

tools that allow a programmer to create an application that has features similar to

other Windows applications without having to write many lines of code.

Visual Basic is based on the BASIC programming language developed in the

1960s by John Kemeny and Thomas Kurtz at Dartmouth University. BASIC

stands for Beginner’s All-Purpose Symbolic Instruction Code and was used by

Kemeny and Kurtz to teach programming to their students.

In 1975, Bill Gates and Paul Allen developed a version of BASIC especially for

the Altair personal computer. With the success of this new version of BASIC,

Gates and Allen founded Microsoft Corporation. BASIC then evolved to

QuickBasic, a structured language that made programming easier for the rapidly

growing number of personal computer users. In 1985, the Windows GUI

(Graphical User Interface) was introduced. In 1992, Microsoft used QuickBasic

and a program called Ruby to develop Visual Basic, an object-oriented

programming environment for creating Windows programs.

Visual Basic programs are event-driven. An event is a way in which the user can

interact with an object, such as using the mouse to click on a button in a dialog

box. An event-driven program waits for an event to occur before executing any

code, then only code for the current event is executed.

Getting Started

1. Start Visual Basic by clicking on the Microsoft Visual Basic Express Edition on the

Program menu or Shortcut.

2. The next page to show up is the Start Page.

The start page contains the following information:

Toolbox: When expanded the toolbox contains all the controls for creating the applications.

Recent Projects Pane: Lists all the recent projects that have been opened.

Getting Started Pane: Allows the user to get help with projects by hyper linking to

programmers or seeing a list of how to articles.

Visual Basic Express Headlines Pane: This is where you receive up to date information about

VB from Microsoft if you have a live internet connection.

MSDN Feeds: By default this feed will come from the MSDN VB 2008 Express RSS feeds.

This feed can be changed through the tools and options page.

Solutions Explorer: This features lists the files and components in your project.

3. Once you click on Create new project the following templates screen will appear. We will be

using the Windows Form Applications for our projects.

4. Your screen should look similar to the picture below. Examine the various parts. If any of

them are missing, they can be restored by clicking on View—Then selecting the appropriate part.

If the Form Windows does not show, double click on the Form name in the Project Window.

Although these Windows can be moved around the screen, it is advisable to leave them in the

configuration shown below.

The Form Window

This is where you design the Windows for your program. You can add additional forms by

clicking on the New Form icon (or selecting New Form from the File menu).

The Solutions Explorer Windows (The Project Window VB6)
Forms are saved as projects. If you need only one form in your program, then that project will

contain only a single form. The project window lists the form names used in your project.

The Toolbox As you can see there are many different controls that can be used in a VB project.

The most commonly used one are boxed in red.

You can select various tools and put them on the form. This can be done by clicking once on the

object and then clicking and dragging across a section on the form, or by double clicking on the

tool and then moving it to the point you wish. By clicking on the object on the form, you will

get handles which indicate that that tool is the active one and you can then resize it, move it, or

set properties on it.

The Properties Window Here is an example of two different objects with some of their

properties. Some are the same while others are totally different.

One of the characteristics of an object is that it has a “state.” This state is made up of a number

of properties. Visual Basic lists the properties of objects in a Properties window. At any one

time, the window shows the properties of only one object. First click on the object to select it,

then go to the properties window and the properties for that object are displayed. If no object is

selected, then the properties for the form are displayed.

Placing the Objects

Textboxes—These are boxes that contain text. A textbox can display numbers, letters, or a

mixture of both. You use textboxes to accept INPUT from people running your program.

Labels—You use a label object to tell something to people running your program—in other

words, to print something.

Buttons – The button controls are buttons that users click as they are running your program.

When a user clicks on one of these buttons, something (an action) happens. The caption of a

button, such as “Exit” or “Quit,” explains what that action will be.

Naming Conventions

The way you name the controls placed on a form is important because the names are used to

refer to the controls in the program code. Meaningful names make understanding the program

code easier.

Textbox names start with the prefix “txt”. The prefix for labels is “lbl”, for Command (Formerly

cmd) Buttons, “btn”, and for forms “frm”. The prefix is followed by one or more words

describing the function of the control. No spaces are used. Each new word is capitalized. Here

are some examples:

 txtLastName

 lblBirthPlace

 txtUnpaidBalance

 btnDisplayPicture

 frmDisplay

Here is the list of prefixes:

Prefix Abbreviations for Control Names

Prefix Control
cbo Combo Box

chk Check Box

btn Button

dir Directory list box

drv Drive list box

fil File list box

fra Frame

frm Form

grd Grid

hsb Horizontal scrollbar

img Image

lbl Label

lin Line

lst List box

mnu Menu

ole OLE client

opt Option button

pic Picture Box

shp Shape

tmr Timer

txt Text box

vsb Vertical scrollbar

Setting Properties for Forms,Textboxes, Labels, and Commands

Labels
Text—This is the text that the label will display

Name—The name of the label—eg. lblBirthplace—The Name is used to identify the label in

code.

Textboxes
Name—The name of the Textbox—eg. txtLastName—used in code

Text—The text that you wish to see displayed, if any. Often this is just deleted as the user will

fill in the textbox when the program is run.

Commands / Buttons
Text—Words you wish to see displayed on the command button.

Name—the name of the button—eg btnExit—used in code

Forms

Name—the name of the form—eg. frmTitle—used in code. This name will appear in the Project

Window. It will also be used as the filename when you save the form.

Text—This text will appear in the Title Bar of the form.

Steps in Creating a Program

This is a three-step process.

1. Select the object and arrange on the form.

2. Set the properties of the form and the objects.

3. Write the code.

To Write the Code—Attaching Actions to Objects

Double click on the object to get to the Code Window. Notice that Sub and End Sub are already

there for you. Insert your code in between. For example, the code for the Exit button would be

Me.Close. This command should be indented to make your code easier to read.

Double clicking on the form name in the Project Window will return you to the form. Then just

double click on the next object you wish to attach code to.

Our First Program

Let’s write a program to display “Play Ball” in large red letters when we hit a command button

called OK.

Step 1—Place a label on the form, as shown, large enough to hold the words Play Ball. Place 2

buttons on the form as shown.

Step 2--Set the properties for the form and the two objects as follows:

Form Set text to We Like to Play Ball

 Set Name to frmPlay

Label Set text to Play Ball

 Set name to lblPlayBall

 Set the font to MS Sans Serif Bold 24 pt

 Set forecolor to red

 Set visible to false

 Set Autosize to true

1
st
 Button Set name to btnOK

 Set text to OK

2
nd

 Button Set name to btnExit

 Set text to Exit

Step 3—Write the code. Double click on the Exit command. Tab to indent, and insert this code

between the sub and end sub commands:

 Me.close

Close the code window to return to the form, and double click on the OK command. Enter this

line of code between the sub and end sub commands.

 lblPlayBall.Visible = True

Run your program. Test the OK and Exit buttons.

Saving a Project—Select File, Save Project As

Select your own folder on the fileserver with your login name on it. For each Visual

Program you wish to save, create a new folder within your folder in which to store all the

files associated with your project. This is necessary because most programs consist of

several files and it is important to keep them together.

You will first be asked to save the form—Yes—The default filename should be

frmPlay.—Make sure to put it in a new folder within your folder.

Then you will save the project—Yes—Name it PlayBall and put it in the same folder.

Using Variables and Making Calculations

Using Variables

Visual Basic programs are designed to deal with a large amount of data stored in the computer.

This data is not entered by you the programmer. Instead, it comes from:

 Users entering information

 Data gathered as the program runs

A good variable name should reflect something about the information it represents. There are

some rules to follow as you create variable names. These names may be up to forty characters

(letters or numbers) long. You should also follow the Intercap method to name variables, using

capital letters to show how words or portions of words are put together.

Eg. SpeedOfTrain

LastName

DateOfBirth

Variable Declaration
This means you will have to declare any variables before you use them in the appropriate sub

program. When you declare a variable you are telling the program the name of the variable and

the type of data it will hold.

Eg. Dim LastName as String

 Dim Amount as Currency

 Dim Quantity as Integer

 Dim Degrees as Single, Frequency as Double

Types of Data

In the beginning, we will use three types of data. If you declare a variable incorrectly, you will

get an error message when you try to run the program.

String This type of variable is used to store words. More correctly, it could be defined as

anything inside quotes.

 Eg. “Miramichi” or “******” are both strings.

Single This type of variable is used to store numbers, including decimal places, to an

accuracy of about 8 digits.

Integer This type is used to store whole numbers only, in the range –32,768 to +32,767

The Other Visual Basic Data Types

Datatype Description and Range
Boolean A Datatype that takes on one of two values only: True or False

Byte Positive numeric values without decimals that range from 0 to 255.

Currency Data that holds dollar amounts from -$922,337,203,685,477.5808 to 922,377,203,685,477.5807.

The four decimal places ensure that proper rounding can occur.

Date Holds date and time values. The date can range from January 1, 100, to December 31, 9999.

Decimal A new Datatype not yet supported in Visual Basic except in a few advanced situations. The

Decimal Datatype represents numbers with 28 decimal places of accuracy.

Double Numeric values that range from -1.79769313486232E+308 to 1.7979769313486232E+308. The

Double Datatype is often known as double-precision.

Integer Numeric values with no decimal point or fraction that range from -32, 768 to 32,767.

Long Integer values with a range beyond that of Integer data values. Long data values range from -

2,147,483,648 to 2,147,483,647. Long data values consume more memory storage than integer

values, and they are less efficient.

Object A special Datatype that holds and references objects such as controls and forms.

Single Numeric values that range from -3.402823E+38 to 3.402823E+38. The Single Datatype is often

called single-precision.

String Data that consists of 0 to 65, 400 characters of alphanumeric data. Alphanumeric means that the

data can be both alphanumeric and numeric. String data values may also contain special characters

such as ^, %, and @. Both fixed length strings and variable – length strings exist.

Variant Data of any Datatype, used for control and other values for which the Datatype is unknown.

Prefixes to Maintain Accurate Datatype

The data types highlighted are the one we will be using:

Prefix Datatype Example
bln Boolean blnIsOverTime

byt Byte bytAge

cur Currency curHourlyPay

dte Date dteFirstBegan

dbl Double dblMicroMeasurement

int Integer intCount

lng Long lngStarDistance

obj Object objSoundClip

sng Single sngYearSales

str String strLastName

vnt or var Variant vntControlValue

Making Calculations

Assignment Statements
 A value is assigned to a variable. Only the variable being assigned the value can appear

on the left side of =. the calculations (expressions) appear on the right side.

Eg.

 Interest = Principal * Rate * Time

 AvgSpeedPerHour = DistanceTravelled / Hours

 TestAverage = (Test1 + Test2 + Test3)/3

 Area = 3.14 * Radius ^ 2

Order of Operations
In writing assignment statements, it is important to understand the order of operations (the order

in which calculations will be performed).

 1. Whatever is inside brackets ()

 2. Exponents 5 ^2 would be 5 squared

 3. Multiplication and Division * /

 4 Addition and Subtraction + -

Go to http://msdn.microsoft.com/en-us/library/fw84t893(VS.80).aspx

for the complete list of operators.

A Program with Calculations

This Program will Calculate the TotalHours you have slept in a Lifetime—assuming 8

hours per day

First, design a form similar to the one below. You should have 3 labels (for the words written

and to display the answer), 1 textbox (to enter your age), and 2 command buttons.

Next, Set the Properties as shown in the table below:

Form Name

Text

frmAge

Determine Hours Slept in Lifetime

http://msdn.microsoft.com/en-us/library/fw84t893(VS.80).aspx

Label1 Text

Font

Enter Your Age

18

Textbox Name

Text

txtAge

(delete Text1)

Label2 Text

Font

Hours spent Sleeping

14

Label3 Name

Text

Border Style

lblTotalHours

(delete the Text)

1—Fixed Single

Command1 Name

Text

btnCalculate

Calculate

Command2 Name

Text

btnExit

Exit

Next, enter the code for the Command Buttons—Remember, double click on the command

button to take you to the code section.

Private Sub btnCalculate_Click()
 Dim Age As Single, HoursPerDay As Single
 Dim TotalHours As Single, DaysPerYear As Single

 Age = Val(txtAge.Text)

 HoursPerDay = 8

 DaysPerYear = 365

 TotalHours = Age * HoursPerDay * DaysPerYear

 lblTotalHours.Text = TotalHours

 txtAge.Focus()

 End Sub

Private Sub btnExit_Click()

 Me.close

End Sub

Run the Program
You should now be able to enter your age (or someone else’s). If you then click on the Calculate

button, it should display the total numbers of hours spent sleeping.

Add Another Button to the Form
Add a third command button to the form whose purpose is to clear the textbox and label so that

you can enter someone else’s age. Name this command btnClear and set the caption to Clear.

The code for the command is
 txtAge.Clear()

 lblTotalHours.text =String.Empty

 txtAge.Focus()

Save Your Program
Select Save Project As. Within your folder, create a new folder called Age. First save the

form—it should be called frmAge. Then save the project—call it Sleep.

Explanation of Code

 The Dim statements on the first two lines declare the required variables as numeric.

 Age = Val(txtAge.Text) takes the Text property from the textbox, txtAge, and assigns it to the

variable Age. Val converts the text property (a text property is a string value) to a numeric

value. Think of Val for Value.

 The next two lines just assign values to the variables.

 TotalHours = Age * HoursPerDay * DaysPerYear is an assignment statement which

performs the calculations on the right side of the equal sign and then assigns that value to the

variable TotalHours

 lblTotalHours.Caption = TotalHours sets the Text property of lblTotalHours to the value of

the variable TotalHours

Setting Focus

Focus is a procedure which will be carried out as the last command of the Clear and Calculate

buttons. This means that after you hit the Clear button, control will be transferred to the textbox

txtAge, ready for you to enter another value. After you hit the calculate button, control will be

passed to the Clear button. You can then just hit enter to clear the values.

