

(b)
$$x^{2} + x^{2} = (2\sqrt{38})^{2}$$

 $\frac{\lambda}{3}x^{2} = \frac{152}{2}$
 $x^{2} = \frac{76}{2}$
 $x = \sqrt{76}$
 $\chi = \sqrt{76}$
 $\chi = \sqrt{19}$
 $P = \frac{4}{2}\sqrt{19}$
 $= 8\sqrt{19}$

$$\begin{array}{l}
\begin{array}{c}
10.d \\
 & \underline{\psi}^{3} \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 & 5 \\
 &$$

Check-Up...

Simplify:

 $3\sqrt{20} - 5a^{3}\sqrt{40a^{7}} - \sqrt{125} + a^{3}\sqrt[3]{320a}$ $= 3(a\sqrt{5}) - 5a^{3}\sqrt{8(5)a^{6}a} - 5\sqrt{5} + a^{3}\sqrt{67(5)a}$ $= 6\sqrt{5} - \sqrt{0a^{3}}\sqrt{5a} - 5\sqrt{5} + 4a^{3}\sqrt{5a}$ $= \sqrt{5} - 6a^{3}\sqrt{5a}$

• Multiplying Radicals

When multiplying radicals, multiply the coefficients and multiply the radicands. You can only multiply radicals if they have the same index.

In general, $(m\sqrt[k]{a})(n\sqrt[k]{b}) = mn\sqrt[k]{ab}$, where k is a natural number, and m, n, a, and b are real numbers. If k is even, then $a \ge 0$ and $b \ge 0$.

Let's look at some examples...

$$3w^{3}\sqrt{2w^{7}} \cdot 5^{3}\sqrt{12w^{5}}$$

$$= 15w^{3}\sqrt{2+w^{2}}$$

$$= 15w^{3}\sqrt{8\cdot3w^{2}}$$

$$= 30w^{5}\sqrt{3}$$

$$(3\sqrt{5}+2\sqrt{12})(\sqrt{15}-4\sqrt{2})$$

$$5\sqrt{2}\left(5-2\sqrt{18}\right)$$

Homework: Complete these 5 questions Am I Ready for Multiplication of Radicals?? Section 5.2 Warm-Up

- **1.** Multiply.
 - a) $(2s^2t)(3s^2t)$ b) (-3x)(2xp)c) 2b(3b-1)d) $-(4x^2 - 3y^2)$ e) (2n-3)(n+1)f) (3x - 4y)(x - 2y)
- 2. Divide.

a)
$$\frac{-6x^2y}{3x}$$
 b) $\frac{(11a^3 - 22a^2 - 44a^2b)}{(11a^2)}$
c) $\frac{4t^2 - 12t}{-2t}$ d) $\frac{(3x - 5)(3x + 5)}{3x + 5}$

3. Express each entire radical as an equivalent mixed radical in simplest form.

a)
$$\sqrt{20x^4y^8}$$
 b) $\sqrt{9xy^4}$

c)
$$\sqrt{6m^2n}$$
 d) $\sqrt[3]{16t}$

Solutions...

Section 5.2
1. a)
$$6s^4t^2$$
 b) $-6x^2p$ c) $6b^2 - 2b$
d) $-4x^2 + 3y^2$ e) $2n^2 - n - 3$ f) $3x^2 - 10xy + 8y^2$
2. a) $-2xy$ b) $a - 2 - 4b$ c) $-2t + 6$ d) $3x - 5$
3. a) $2x^2y^4\sqrt{5}$ b) $3y^2\sqrt{x}$ c) $m^2\sqrt{6mn}$ d) $2t\sqrt[3]{2t}$
4. a) $\sqrt{18p^3}$ b) $\sqrt{48x^5}$ c) $\sqrt[3]{x^4}$ d) $-\sqrt[3]{40y^3}$
5. a) $2\sqrt{p}$ b) $3x - x\sqrt{3}$ c) $5\sqrt{ab}$ d) $-\sqrt{11y}$
e) $10x + 6\sqrt{5}$ f) $6\sqrt{2x} + 5$

 Express each mixed radical as an equivalent entire radical.

a)
$$3p\sqrt{2p}$$
 b) $4x^2\sqrt{3x}$
c) $x\sqrt[3]{x}$ d) $-2y\sqrt[3]{5}$

5. Simplify. Assume that all variables represent positive values.

a)
$$4\sqrt{p} - 3\sqrt{p} + \sqrt{p}$$

b) $x\sqrt{4} - x\sqrt{3} + x$
c) $9\sqrt{ab} + 3\sqrt{ab} - \sqrt{49ab}$
d) $\sqrt{11y} - \sqrt{44y}$
e) $(30x + \sqrt{80}) - (20x - \sqrt{20})$
f) $(8 + \sqrt{18x^2}) + (2 - \sqrt{8x^2}) - (5 - \sqrt{50x^2})$

Mathematical Pathways Description.docx

Pre-Calculus 110 - Fall 2012.doc