Let's revisit the bonus problem...

A square, ABCD, has a perimeter of 4 m. △CDE is an equilateral triangle inside the square. The intersection of AC and DE occurs at point F. What is the exact length of AF?

Dividing Radical Expressions

Property:
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} \text{ if } b \neq 0$$

Let's look at a few examples...

$$\frac{\sqrt{15}}{\sqrt{3}} = \sqrt{\frac{15}{3}} = \sqrt{5}$$

$$= \frac{24\sqrt{48}}{3\sqrt{12}} = \frac{8\sqrt{4}}{3\sqrt{12}} = \frac{8\sqrt{4}}{3\sqrt{12}} = \frac{8\sqrt{4}}{3\sqrt{12}} = \frac{8\sqrt{4}}{3\sqrt{2}\sqrt{2}} = \frac{8\sqrt{4}}{3\sqrt{2}\sqrt{2}} = \frac{8\sqrt{4}}{3\sqrt{2}\sqrt{2}} = \frac{8\sqrt{4}}{3\sqrt{2}\sqrt{2}} = \frac{8\sqrt{4}}{3\sqrt{2}\sqrt{2}} = \frac{8\sqrt{4}}{3\sqrt{2}} = \frac{8\sqrt{4}}{3\sqrt{2}}$$

What if the everything does not divide evenly??

$$\frac{\sqrt{10}}{\sqrt{6}} = ??$$

Rationalizing the Denominator

rationalize

- convert to a rational number without changing the value of the expression
- If the radical is in the denominator, both the numerator and denominator must be multiplied by a quantity that will produce a rational denominator.

$$\frac{\sqrt{10}}{\sqrt{6}}(\sqrt{6}) = \sqrt{60} = 2\sqrt{6}$$

$$= \sqrt{60}$$

$$\frac{6}{\sqrt{12}} \left(\frac{15}{\sqrt{12}} \right) \frac{\sqrt{28}}{\sqrt{8}} \left(\frac{18}{\sqrt{8}} \right) = \frac{\sqrt{224}}{8}$$

$$= \frac{6\sqrt{12}}{12}$$

$$= \frac{6\sqrt{12}}{12}$$

$$= \frac{6\sqrt{12}}{12}$$

$$= \frac{12\sqrt{18}}{8\sqrt{8}} \left(\frac{18}{\sqrt{8}} \right) = \frac{12\sqrt{14}}{3\sqrt{14}}$$

$$= \frac{36\sqrt{16}}{16\sqrt{2}} \left(\frac{12\sqrt{144}}{8\sqrt{16}} \right) = \frac{12\sqrt{16}}{3\sqrt{16}}$$

$$= \frac{36}{\sqrt{16}} \left(\frac{12\sqrt{144}}{64} \right) = \frac{12\sqrt{16}}{3\sqrt{16}}$$

$$= \frac{12\sqrt{16}}{3\sqrt{16}} \left(\frac{12\sqrt{144}}{64} \right) = \frac{12\sqrt{16}}{3\sqrt{16}}$$

$$= \frac{12\sqrt{16}}{64} = \frac{12\sqrt{16}}{3\sqrt{16}}$$

$$= \frac{12\sqrt{16}}{64} = \frac{12\sqrt{16}}{3\sqrt{16}}$$

$$= \frac{12\sqrt{16}}{3\sqrt{16}} = \frac{12\sqrt{16}}{3\sqrt{16}}$$

$$= \frac{12\sqrt{16}}{3\sqrt{16}} = \frac{12\sqrt{16}}{3\sqrt{16}}$$

$$= \frac{12\sqrt{16}}{3\sqrt{16}} = \frac{12\sqrt{16}}{3\sqrt{16}}$$

$$= \frac{12\sqrt{16}}{3\sqrt{16}} = \frac{12\sqrt{16}}$$

What about rationalizing with other indicies??

$$\frac{9\sqrt{24}}{\sqrt[3]{6}} \left(\frac{\sqrt[3]{3}}{\sqrt[3]{6}} \right)^{\frac{3}{3}} = 6^{\frac{3}{3}}$$

$$= \frac{9\sqrt{24}}{\sqrt[3]{6}} \left(\frac{\sqrt[3]{6}}{\sqrt[3]{6}} \right)^{\frac{3}{3}}$$

$$= \frac{3}{6} \left(\frac{\sqrt[3]{6}}{\sqrt[3]{6}} \right)^{\frac{3}{3}}$$