Thursday, September 13/12 Science 10

- 1. Questions About Worksheet?
- 2. Pre-Assessment #1 Two More Questions
- 3. Activities (2) $P3 + P4 \rightarrow No HW$
- 4. ICA (In Class Assignment)
- 5. Textbooks

Pre-Assessment #1 - Continued

- 8. a) Define accuracy.
 - b) Define precision.
 - accuracy is a comparison of an experimental value with an accepted value

- precision is the ability of a measurement to be consistently repeated

9. How do you calculate percentage error?

% error =
$$\left| \frac{\text{experimental value - accepted value}}{\text{accepted value}} \right| \times 100$$

$$|-2| = 2$$
absolute value

Example: }

- speedometer in a car shows -> 65 km/h
- police measure the car's speed with a radar gun -> 74.8 km/h
- radar guns must be calibrated using a scientifically valid procedure
- police reading is the authority that is legally accepted as correct
- car's speedometer is not accurate because it does not agree with the accepted value

% error =
$$\frac{\text{experimental value - accepted value}}{\text{accepted value}} \times 100$$
% error = $\frac{65 \text{ km/h} - 74.8 \text{ km/h}}{74.8 \text{ km/h}} \times 100$
% error = $\frac{13\%}{15\%}$

Activity: Acceleration Due to Gravity 🗸

The <u>accepted value</u> for the acceleration due to gravity is 9.80 m/s².

Given the formula and items below:

- 1. calculate an experimental value for the acceleration due to gravity.
- 2. determine the percentage error of the experimental value

Items:

1 stuffed animal

1 piece of yarn

1 weight

1 meter stick

1 stopwatch