Bracket Notation

$$(-\infty,3)$$

$$(2,3)$$

$$(-1,2]$$

Intervals of Increase and Decrease...

Given the function $f(x) = x^4 - 4x^3$, use the graph below to determine the intervals where f(x) is increasing and where f(x) is decreasing.

The Calculus of Intervals of Increase and Decrease

• Examine this graph for intervals of increase and decrease...

M" A B

What do you notice about the slopes of these tangents?

What do you notice about the slopes of these tangents?

Intervals of increase?

(B,c)

Intervals of decrease?

K

Critical Value(s):

Any value of x such that f'(x) = 0 or f'(x) is undefined.

Where does f(x) switch from increasing to decreasing? How would this tie in with Calculus?

• At the point where a function switches from increasing to decreasing, or decreasing to increasing, the derivative must be equal to 0 or undefined.

Let's summarize how Calculus could be used to identify regions of increase or decrease...

If $f'(x) < 0 \longrightarrow f(x)$ is decreasing

The graphs below illustrate the first derivative test.

Relative Extrema: (local maximum or local minimum)

We say that f(x) has a **relative (or local) maximum** at x = c if $f(x) \le f(c)$ for every x in some open interval around x = c.

• function switches from increasing to decreasing.

We say that f(x) has a **relative (or local) minimum** at x = c if $f(x) \ge f(c)$ for every x in some open interval around x = c.

• function switches from decreasing to increasing.

First Derivative Sign Table:

Intervals of increase and decrease can be organized using a first derivative sign table...

Example:

Determine the intervals of increase and decrease for the function ...

1) Critical Values:

$$f(x) = x^{4} - 4x^{3} + 2$$

$$f'(x) = 4x^{2} - 12x^{2}$$
Factor of f

$$O = (x^{2})(x-3)$$

$$Continual (x-3) + - Deice$$
Critical Values: $x = 0, 3$

$$(0, 3) + - Deice$$

$$(3, \infty) + + Int$$

$$Decal Mossimum$$

$$None$$

$$O = (3, -25) = 25$$

Another example...

Clemson University: Final Exam 2011

6. **(15 pts.)** Consider $f(x) = 6x^2 - x^3$.

a. (7 pts.) Identify the intervals on which f(x) is increasing and decreasing. Give the ordered pair (x, y) at any local extrema, identifying each as a local maximum or local minimum. Put your answers in the blanks below.

F(x)=12x-3x2		3×	4-x	£,	t
0=3x(4-x)	$(-\infty,0)$	-	+	•	Dec
X=0,4	(0,4)	+	+	+	Inc
	$(4,\infty)$	+	_	-	Dec
LOCAL MAX.	LOCAL 1	M.	•	1	
(4,32)	$\frac{\overline{(o,0)}}{(o,0)}$		lacksquare	(, 4221
, ,	(0,0)) /	(4,32)
					7

