Warm Up
Use a definite integral to evaluate the following areas:

1. Determine the area below the curve $f(x)=\sqrt{x}+2$ and above the x-axis between $x=4$ and $x=9$.

2. Determine the area bounded by the curve $f(x)=x^{2}-2 x$ and the x-axis between $x=0$ and $x=4$.

$$
\begin{aligned}
& y=x^{2}-2 x^{2} \\
& 0=x(x-2) \\
& x=0,2
\end{aligned}
$$

$$
\begin{array}{ll}
\left.\left(\frac{x^{3}}{3}-x^{2}\right)\right|_{0} ^{2}+\left.\left(\frac{x^{3}}{3}-x^{2}\right)\right|_{2} ^{4} \\
\left(\frac{8}{3}-\frac{4}{1}\right) & {\left[\left(\frac{6 y}{3}-16\right)-\left(\frac{8}{3}-4\right)\right]} \\
\left|\frac{-4}{3}\right|+\frac{56}{3}-12
\end{array}
$$

$$
=\frac{60}{3}-12
$$

$$
=20-12
$$

$$
=8 u^{2}
$$

Area Between Curves

What if we would like to determine the area between two curves?

Could we use rectangular strips?

Write out a definite integral that would represent the area of region S.

Example:
Determine the area bounded by the curve $f(x)=-x^{2}-2$ and the lines $x=-1, x=2$ and $y=-4$.

1. Start with a sketch... ,

1-start with a

Pts. ff Intersection

$$
-x^{2}-2=-4
$$

$$
2=x^{2}
$$

$$
x= \pm \sqrt{2}
$$

$$
\begin{aligned}
& \int_{-1}^{\sqrt{2}}\left(\left(-x^{2}-2\right)-(-4) \operatorname{loper}^{1}-10\right. \text { er } \\
& \sqrt{2} \\
& \int_{-1}^{1}\left(-x^{2}+2\right) d x+\int_{\sqrt{2}}^{2}\left(-4-\left(-x^{2}-2\right)\right] d x \\
& =\left.\left(\frac{x^{3}}{3}+2 x\right)\right|_{\sqrt{2}} ^{\sqrt{2}}\left(x^{2}-2\right) d x
\end{aligned}
$$

Example:
Determine the area bounded by the curves $f(x)=-x^{2}+9$ and $f(x)=2 x^{2}-3$.
Pts. of Intersection:

$$
\begin{aligned}
& -x^{2}+9=2 x^{2}-3 \\
& -3 x^{2}=-12 \\
& x^{2}=4 \\
& x= \pm 2
\end{aligned}
$$

$$
\int_{-2}^{2}\left(-3 x^{2}+12\right) d x
$$

$$
=-x^{3}+\left.12 x\right|_{-2} ^{2}
$$

$$
=(-8+2 x)-(8-2 x)
$$

$$
=32 u^{2}
$$

