Another means of calculating volume...

Cylindrical Shell Method:

x₀ y-a

y-axis.

The result is a cylinder with a "very small side" like the side of a can:

Take this cylinder and cut it vertically as shown:

The volume of the solid obtained by rotating this area about the y-axis is:

$$2 \pi \int_{0}^{1} x f(x) dx = 2 \pi \int_{0}^{1} x (x - x^{2}) dx$$
radius height thickness

Notice that even though we are rotating about a vertical line, the integral is still in terms of *x*.

What if we had used cylindrical disks?

Imagine cutting a cake using this method...

This would be an example of a cylindrical shell

Example 1:

The region bounded by the curve $y = 4 - x^2$, y = x, and x = 0 is revolved about the y-axis to generate a solid. Determine the volume of this solid.

Example 2:

The region bounded by the curve $y = 3x - x^2$ and the x-axis is revolved about the line x = -1 to generate a solid. Determine the volume of this solid.

Practice Questions...

Worksheet: Volume using shell method

volume using shell method worksheet.doc