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Areas bound by curves...

(1) Determine the area of region S by using the left endpoints 
     of 8 equal subintervals.
(2) Determine the area of region S by using the right endpoints 
     of 8 equal subintervals.

(3) Determine the area of region S by using 8 subintervals and the 
     trapezoidal rule.



3

4

(4 , 16)

(1) Determine the area of region S by using the left endpoints 
     of 8 equal subintervals.
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(2) Determine the area of region S by using the right endpoints 
     of 8 equal subintervals.
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(3) Determine the area of region S by using 8 subintervals and the 
     trapezoidal rule.

a b
h



6

4

(4 , 16)



7

Sigma Notation

Example:

Evaluate

What about the following? 
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Evaluate the following...
(i) without summation properties
(ii) using summation properties
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Notice that these 
are INFINITE

Notice that these 
are FINITE
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Let's revisit the example used yesterday...

We want to find the area below this curve using " n" rectangles.

What will be the width of each rectangle?

How will we determine the height of each rectangle?

Write out an expression for the area of these "n" rectangles?



Attachments

volume using shell method worksheet.doc

Review of antiderivatives, area and volume.doc


AP Calculus 120

Volumes of Revolution: Shell Method
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1. Let S be the solid obtained by rotating the region shown in
the figure about the y-axis. Explain why it is awkward to use
slicing to find the volume V' of S. Sketch a typical approxi-
mating shell. What are its circumference and height? Use shells
to find V.

0 T x

2. Let $ be the solid obtained by rotating the region shown in the
figure about the y-axis. Sketch a typical cylindrical shell and
find its circumference and height. Use shells to find the volume
of S. Do you think this method is preferable to slicing? Explain.

¥

y=sinlx’)

N

3-7 1 Use the method of cylindrical shells to find the volume gen-
crated by rotating the region bounded by the given curves about the
y-axis. Sketch the region and a typical shell

2

Ly=1/x y=0 x=

5 2, y=4 x=0

b p=3 425 %% ¥ty

Ty=4a-27% y=x'—-4x+7

8. Let V be the volume of the solid obtained by rotating about the
y-axis the region bounded by y = vx and y = x* Find V both
by slicing and by cylindrical shells. In both cases draw a dia-
gram to explain your method.

9-14 i Use the method of cylindrical shells to find the volume of
the solid obtained by rotating the region bounded by the given
curves about the x-axis. Sketch the region and a typical shell

12.
13.
14.

2wty=6
4-( -1

15-20 11 Use the method of cylindrical shells to find the volume
generated by rotating the region bounded by the given curves abost
the specified axis. Sketch the region and a typical shell

15 v

L y=0,x=1 x=2; aboutx=1
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about the y-axis
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¥ =8x—2x% aboutx=—2
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abouty = —1






Solutions to odd numbered questions
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[image: image5.jpg]37-42 1l The region bounded by the given curves is rotated about
the specified axis. Find the volume of the resulting solid by any
method.

37.y=x"+x—2, y=0: aboutthe x-axis
38.
39.
40.
41 x*+ (y — 1 =1; aboutthey
42 X+ (y — 1)

—3x+2, y=0; about the y-axis

=5x+9; aboutx=—1

=0; aboutx=2

axis

about the x-axis





[image: image6.jpg]ARG gy g/ey Ly

T/2E9 6 OL/ZI8 'L LY SE SOTiTel 0 ‘Ee

¢ = « oury ay) 1noqe
0=«€pm|—x'd—xWIg=Cpuep—x.6—|=x®)
4q papunog uoidar oy Suneor £q paureiqo pijos *|g




SMART Notebook


AP Calculus 120

Review: Antiderivatives , Areas and Volumes


Multiple Choice










Instructions: Shade in the letter on the scantron sheet provided.
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