Warm UP

The brakes of a car decelerate the car at 22 ft.'S? The car is
travelling at 60 mph and applies the brakes 175 feet from a
concrete barrier. Should we call 9117 1 mile = 5280 feet
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Areas bound by curves...
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(1) Determine the area of region S by using the left endpoints

of 8 equal subintervals.

(2) Determine the area of region S by using the right endpoints

of 8 equal subintervals.
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(3) Determine the area of region S by using 8 subintervals and the

trapezoidal rule
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(1) Determine the area of region S by using the left endpoints
of 8 equal subintervals.
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(2) Determine the area of region S by using the right endpoints
of 8 equal subintervals.
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(3) Determine the area of region.S by using 8 subintervals and the
trapezoidal rule s
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Example:
Evaluate 24: (3 — 2)
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Summation properties...
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Evaluate the following...
(1) without summation properties
(1) using summation properties
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Summation Rules
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Let's revisit the example used yesterday...
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We want to find the area below this curve using " n" rectangles.
What will be the width of each rectangle? Ax=
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How will we determine the height of each rectangle? xkg Kk ( -L)
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Write out an expression for the area of these "n" rectangles?

2 86
)
") > £ (&)

10



Attachments

Q volume using shell method worksheet.doc

Q Review of antiderivatives, area and volume.doc



AP Calculus 120

Volumes of Revolution: Shell Method
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1. Let S be the solid obtained by rotating the region shown in
the figure about the y-axis. Explain why it is awkward to use
slicing to find the volume V' of S. Sketch a typical approxi-
mating shell. What are its circumference and height? Use shells
to find V.

0 T x

2. Let $ be the solid obtained by rotating the region shown in the
figure about the y-axis. Sketch a typical cylindrical shell and
find its circumference and height. Use shells to find the volume
of S. Do you think this method is preferable to slicing? Explain.

¥
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3-7 1 Use the method of cylindrical shells to find the volume gen-
crated by rotating the region bounded by the given curves about the
y-axis. Sketch the region and a typical shell

2
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5 2, y=4 x=0
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8. Let V be the volume of the solid obtained by rotating about the
y-axis the region bounded by y = vx and y = x* Find V both
by slicing and by cylindrical shells. In both cases draw a dia-
gram to explain your method.

9-14 i Use the method of cylindrical shells to find the volume of
the solid obtained by rotating the region bounded by the given
curves about the x-axis. Sketch the region and a typical shell

12.
13.
14.

2wty=6
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15-20 11 Use the method of cylindrical shells to find the volume
generated by rotating the region bounded by the given curves abost
the specified axis. Sketch the region and a typical shell
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Solutions to odd numbered questions
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[image: image5.jpg]37-42 1l The region bounded by the given curves is rotated about
the specified axis. Find the volume of the resulting solid by any
method.
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AP Calculus 120

Review: Antiderivatives , Areas and Volumes


Multiple Choice










Instructions: Shade in the letter on the scantron sheet provided.
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