Sketch $f(x)$

| (1) | |
| :--- | :--- | :--- |
| x | y |
| -1 | -2 |
| -2 | -3 |\(\quad f(x)= \begin{cases}x-1, \& if x<-1 \\

x^{2}-2, \& if-1 \leq x<2 \\
1, \& if x=2 \\
-(x-1)^{2}+3, \& if x>2\end{cases}\)
(3) $V(0,-2)$ (3) $(2,1)$ (4) $V(1,3) \leftarrow$ Not in domain!!

$$
\begin{array}{c|c}
x & y \\
\hline-1 & -1 \\
2 & 2
\end{array}
$$

$$
\begin{array}{c|c}
x & y \\
\hline 2 & 2 \\
3 & -1
\end{array}
$$

6. $y=x^{2} \longrightarrow \begin{gathered}\text { original graph } \\ y=x^{2}\end{gathered}$

$$
y=\frac{x^{2}}{x} \frac{y}{4} \frac{y}{16}
$$

Now

7.

Check-Up...
Copy and complete the table.
$\begin{array}{l|l|l|l|}\text { Pg. 13 }\end{array}$ Translation $\left.\begin{array}{c}\text { Transformed } \\ \text { Function }\end{array} \quad \begin{array}{c}\text { Transformation of } \\ \text { Points }\end{array}\right]$

Reflections and Stretches

Focus on...

- developing an understanding of the effects of reflections on the graphs of functions and their related equations
- developing an understanding of the effects of vertical and horizontal stretches on the graphs of functions and their related equations

A reflection of a graph creates a mirror image in a line called the line of reflection. Reflections, like translations, do not change the shape of the graph. However, unlike translations, reflections may change the orientation of the graph.

- When the output of a function $y=f(x)$ is multiplied by -1 , the result, $y=-f(x)$, is a reflection of the graph in the x-axis.

Mopping: $(x, y) \rightarrow(x,-y)$

- When the input of a function $y=f(x)$ is multiplied by -1 , the result, $y=f(-x)$, is a reflection of the graph in the y-axis.

$$
\text { Mapping: }(x, y) \rightarrow(-x, y)
$$

Example 1

Compare the Graphs of $y=f(x), y=-f(x)$, and $y=f(-x)$
a) Given the graph of $y=f(x)$, graph the functions $y=-f(x)$ and $y=f(-x)$.
b) How are the graphs of $y=-f(x)$ and $y=f(-x)$ related to the graph of $y=f(x)$?

Remember...

- When the output of a function $y=f(x)$ is multiplied by -1 , the result, $y=-f(x)$, is a reflection of the graph in the x-axis.
- Sketch $y=-f(x)$ on the axis below

Remember...

- When the input of a function $y=f(x)$ is multiplied by -1 , the result, $y=f(-x)$, is a reflection of the graph in the y-axis.
- Sketch $y=f(-x)$ on the axis below

Invariant Point

stretch $\{$ compression

- a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor
- scale factors between 0 and 1 result in the point moving closer to the line of reflection; scale factors greater than 1 result in the point moving farther away from the line of reflection

Vertical and Horizontal Stretches

A stretch, unlike a translation or a reflection, changes the shape of the graph. However, like translations, stretches do not change the orientation of the graph.

- When the output of a function $y=f(x)$ is multiplied by a non-zero constant a, the result, $y=a f(x)$ or $\frac{y}{a}=f(x)$, is a vertical stretch of the graph about the x-axis by a factor of $|a|$. If $a<0$, then the graph is also reflected in the x-axis.
- When the input of a function $y=f(x)$ is multiplied by a non-zero constant b, the result, $y=f(b x)$, is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If $b<0$, then the graph is also reflected in the y-axis.

Vertical Stretch or Compression...

- When the output of a function $y=f(x)$ is multiplied by a non-zero constant a, the result, $y=a f(x)$ or $\frac{y}{a}=f(x)$, is a vertical stretch of the graph about the x-axis by a factor of $|a|$. If $a<0$, then the graph is also reflected in the x-axis.

$$
y=|x|
$$

$$
y=3|x|
$$

$$
y=a f(x)
$$

$$
y=\frac{1}{2}|x|
$$

$$
\text { Mapping: }(x, y) \rightarrow(x, a y)
$$

Sketch each of the following:
a) $g(x)=2 f(x)$
b) $g(x)=\frac{1}{2} f(x)$

Horizontal Stretch or Compression...

$$
\begin{aligned}
y & =f(b x)
\end{aligned} \quad y=f\left(\frac{1}{5} x\right)
$$

Horizontal Stretch or Compression...

- When the input of a function $y=f(x)$ is multiplied by a non-zero constant b, the result, $y=f(b x)$, is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If $b<0$, then the graph is also reflected in the y-axis.
$y=f(-2 x)$

Example 1: Apply $f\left(\frac{1}{2} x\right)$ to the graph.
\Rightarrow Double x-values

Apply $f(2 x)$ to the given graph.

1
of x-uglaes

$$
\begin{aligned}
& y=-3 f(-2 x)+7 \quad-\left(\frac{1}{2}\right) x \\
& (x, y) \rightarrow\left(-\frac{1}{2} x,-3 y+7\right) \quad-\frac{1}{2} x \\
& \Rightarrow \text { Reflected in } x \text { ' }^{y} y \text { axis } \\
& \Rightarrow \text { Stretch ventirally by a factor of } 3 \\
& \Rightarrow \text { ". horizontally " ". " } \frac{1}{2} \\
& \Rightarrow \text { shift up } 7
\end{aligned}
$$

