Electric Fields

A charge creates an <u>electric field</u> around itself in all directions. If a second charge is placed at some point in the field, the second charge interacts with the field at that point.

One way to represent electric fields involves the use of a **positive test charge** and imaginary <u>electric field lines</u> (sometimes called <u>force lines</u>).

a positive source charge and a negative source charge:

two positive source charges:

Strength or Intensity of an Electric Field

Coulomb's Law can be written to describe the force between q and q_t .

 $F = \frac{kqq_t}{r^2}$ $q \Rightarrow 5 \text{ on rea}$ $q \Rightarrow 1 \text{ of } r \Rightarrow$

Divide both sides by q_t .

$$\frac{F = kqq_t}{q_t}$$

$$\frac{F = kq}{q_t} = \frac{r^2}{r^2}$$

$$E = \frac{F}{q_t}$$

E - magnitude of electric field intensity (N/C)

F - magnitude of electric force (N)

q_t - charge of the test charge (C)

$$E = \frac{kq}{r^2}$$

E - magnitude of electric field intensity (N/C)

k - Coulomb's constant

q - source charge (C)

r - distance between q and $q_t(m)$

Textbook: Page 646, #11-14

Textbook: Page 655, #20-24