Quadrantal Angles

Unit Circle

unit circle

- a circle with radius1 unit
- a circle of radius 1 unit with centre at the origin on the Cartesian plane is known as the unit circle

$$Sin0 = \frac{\lambda}{\lambda} \quad \cos0 = \frac{\lambda}{\lambda} \quad \xian0 = \frac{\lambda}{\lambda}$$

The equation of the unit circle is $x^2 + y^2 = 1$.

Determine the equation of a circle with centre at the origin and radius 6.

•

Special Angles (in radians)

Quadrantal Angles

Special Angles on the Unit Circle:

Unit Circle of Special Angles in Degrees

This is lovely...so what is it used for????

Unit Circle of Special Angles in Radians

Sketching Angles in Radians

$$\cos \frac{13\pi}{3}$$

Ex.
$$\tan \frac{17\pi}{6}$$

$$18\pi - \pi$$

$$3\pi - \pi$$

Ex.
$$\sin \frac{15\pi}{4} = \frac{1}{\sqrt{2}}$$

$$\frac{16\pi}{7} - \frac{\pi}{7}$$

$$\frac{7\pi}{7} - \frac{\pi}{7}$$

Ex.
$$\cos\left(-\frac{21\pi}{4}\right) = -\frac{1}{1/2}$$

Evaluate without the use of a calculator:

