/ogax

10937 = 1.77/ 1093

$$| v_{g} |_{X = | v_{g} |_{X}}^{X = | v_{g} |_{X}}$$

$$| x |_{X = | v_{g} |_{X}}^{X = | v_{g} |_{X}}$$

$$| x |_{X = | v_{g} |_{X}}^{X = | v_{g} |_{X}}$$

This process leads to a very useful formula...

Have you ever thought...

"b raised to what power will give me some number N?"

ie.
$$\log_b N = x$$
 or $b^x = N$

Solve the equation:
$$b^x = N$$

Could we have taken the logarithm of each side to any base we had chosen?

This leads to the change of base formula:

$$\log_b N = \frac{\log_a N}{\log_a b}$$

Evaluate each of the following:

$$\log_{5} 45 = \log_{5} 45$$
 $\log_{5} 45 = \log_{5} 45$
 $\log_{5} 45 = \log_{5} 45$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

$$2^{x+5} = 4096$$

log 2 4096

8.e)
$$|og_2|\sqrt{x^2+4x} = \frac{5}{2}$$

 $(2^{5/4})^2 = (\sqrt{x^2+4x})^2$
 $2^5 = x^2+4x$
 $0 = x^2+4x-32$
 $0 = (x+8)(x-4)$
 $x = -8$ or $x = 4$

$$x^{2}+6y=0$$

$$x(x+6)=0$$

$$y=0$$

Warm-up...

Solve the following.
$$\frac{3^{x} \cdot 2^{x+1}}{4^{3x}} = 5^{2x}$$

$$x \log_{3} + (x+i)\log_{2} - 3x \log_{3} + 2x \log_{5} + 2x \log$$

HOMEWORK...

EXTRA! EXTRA!

Solve:
$$\frac{2^x \bullet 5^{3x-1}}{4^{2x+1}} = \frac{5(7^{5x})}{3^{2x+3}}$$

a)
$$\log_6\left(\frac{2\times t}{X-1}\right) = \log_6 5$$

 $(x-t)^2 \frac{2\times t}{X-1} = S(X-1)$
 $2\times t = SX-5$
 $-3\times = -6$
 $X=3$

 $\log_{2}(x^{2}+2x) = \log_{2} 2^{3}$ $\log_{2}(x^{2}+2x) = 3$ $2^{3} = x^{2}+2x$ $x^{2}+2x-8=0$ (x+y)(x-2)=0 $x=x^{2}$

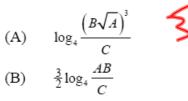
1. Solve:
$$\frac{2 \cdot 6^{x+1} = 18}{2}$$
.

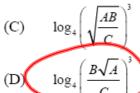
(A) $\frac{\log 9 - 1}{\log 6}$ ($\frac{x+1}{6} = 9$ ($\frac{\log 2 + x \log 6 + \log 6}{\log 6} = \log 18$

(B) $\frac{\log 9}{\log 6} - 1$ ($\frac{x+1}{\log 12} + \log 6 = \log 9$ ($\frac{\log 2 + x \log 6 + \log 6}{\log 6} = \log 18$

(C) $\frac{\log 18}{\log 12} - 1$ ($\frac{\log 18 - 1}{\log 12}$ (D) $\frac{\log 18 - 1}{\log 12}$ ($\frac{\log 18 - \log 1}{\log 12}$ ($\frac{\log 18}{\log 12}$ ($\frac{\log 18}$

2. Which is equivalent to $3\left[\frac{1}{2}\log_4 A + \log_4 B - \log_4 C\right]$?



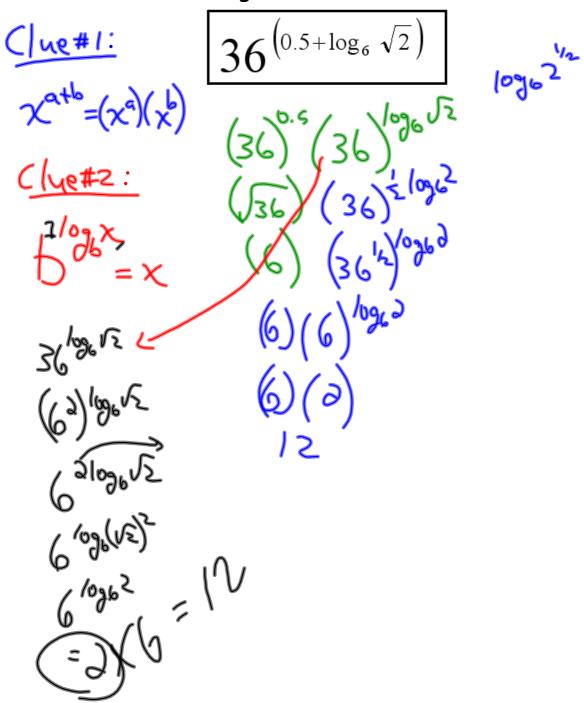


3. Algebraically solve: $\log_2(x+2) + \frac{1}{3}\log_2(8x^3) = 16^{\frac{1}{2}}$. 1/092(x+2)+/092(2x)=4 1092 (5x2+4x) = 4 2 = 2x74x

4. A truck is purchased for \$51 000 and depreciates by 23% annually. At the same time a minivan is purchased for \$38 000 and depreciates by 17% annually. Write an equation to model this situation and use it to determine when the two vehicles will be of equal value.

Truck
$$\frac{1}{4}$$
 0 $\frac{1}{4}$ 0

Evaluate the following without a calculator ...



formula:

$$\log_b M = \log_x M$$

$$\log_b X = \log_x M$$

$$\log_3 147 = \log_1 147$$
 $= 9.59$

Logarithmic Scales

I. Richter Scale: Severity of Earthquakes

$$R = \log_{10} \left(\frac{I}{I_o} \right)$$

R - magnitude of an earthquake

I - Intensity of the earthquake (amplitude of the wave on a seismograph)

I_o - Intensity of the reference earthquake (1 micron) (1 micron = 10⁻⁴ cm)

Charles F. Richter 1900-1985

The intensity of the earthquake is measured by the amplitude of a seismograph reading taken 100 km from the epicenter of the earthquake.

This implies that an earthquake that reads a 5 on the Richter scale would be 10 times more intense than an earthquake that reads a 4 on the Richter Scale.(The scale jumps by powers of 10)

How many times more intense would an earthquake that reads an 8 on the Richter Scale be than a 5 on the Richter Scale?

If the intensity of earthquake A is 5 and the intensity of earthquake B is 650, what is the difference in their magnitudes as measured by the Richter Scale?

$$A/R = log \left(\frac{I}{lo^{-1}}\right)$$
 $B/R = log \left(\frac{650}{lo^{-1}}\right)$
 $R = log \left(\frac{5}{lo^{-1}}\right)$
 $R = 6.813$
 $R = 4.699$
 $A: M = 2.114$

The 1985 Mexico City earthquake had a magnitude of 8.1 on the Richter scale and the 1976 Tangshan earthquake was 1.26 as intense. What was the magnitude of the Tangshan earthquake on the Richter Scale?

8.1=
$$\log \left(\frac{I}{10^{-4}}\right)$$
 $10^{-4}/0^{8.1} = \frac{I}{10^{-4}}(10^{-4})$
 $I = 10^{4.1}$
 $R = 10^{4.1}$
 $R = 10^{4.1}$
 $R = 10^{4.1}$
 $R = 10^{4.1}$