Wednesday, May 15/13 Science 122

Announcements

** Need an activity re a course topic before the end of May.

- 1. Assessment Thermodynamics
- 2. Radioactive Decay
- 3. Decay Series
- 4. Half-Life
- 5. Activity and Decay Constants
- 6. Worksheet Half-Life, Activity and Decay Constant #1 HW

(Giancoli #37, Page 941)

The decay constant of a given nucleus is $5.4 \times 10^{-3} \text{ s}^{-1}$. What is its half-life in minutes? (2.1 minutes)

$$\lambda = 5.4 \times 10^{3} \text{ T}_{1/2} = 0.693$$

$$T_{1/2} = \frac{0.693}{5.4 \times 10^{-3} \text{ s}^{-1}}$$

$$T_{1/2} = \frac{12.8.35}{11/2} = 12.1 \text{ min}$$

(Giancoli #47)

(92)

A sample of uranium-233 ($T_{1/2} = 1.59 \times 10^5 \text{ yr}$) contains 6.50 x 10¹⁹ nuclei.

- a) What is the decay constant of uranium-233? $(1.38 \times 10^{-13} \text{ s}^{-1})$ b) What is the activity when 6.50×10^{19} nuclei are present?
- $(8.97 \times 10^6 \text{ Bq})$

A)
$$\lambda = 7$$

$$\frac{1.59 \times 1097}{T_{1/2}}$$

$$1.59 \times 1097 \times \frac{3.156 \times 10^{4}5}{19} = 5.016 \times 105$$

$$\lambda = \frac{0.693}{5.016 \times 10^{12}5}$$

$$\lambda = 1.36 \times 10^{-13}5^{-1}$$

$$A = \lambda N$$

$$A = \lambda N$$

$$A = (1.38 \times 10^{5})(650 \times 10^{19})$$

$$A = 8.97 \times 10^{6} B_{9}$$

Suppose there are 3.0×10^7 radon atoms trapped in a basement. The half-life of radon is $T_{1/2} = 3.83$ days or 3.31×10^5 s.

- a) How many radon atoms remain after 31 days? (1.1×10^5)
- b) Find the activity
 - (i) just after the basement is sealed. (63 Bq)
 - (ii) 31 days later. (0.23 Bq)

(ii) 31 days later. (0.23 Bq)

$$N_{0} = 3.6 \times 10^{7}$$
 $N_{0} = 3.6 \times 10^{7}$
 $N_{0} = 0.663$
 $N_{0} = 0.663$

(#33, Page 963)

A device used in radiation therapy for cancer contains 0.50 g of cobalt-60 (59.934 g/mol). The half-life of cobalt-60 is 5.27 yr. Determine the activity of the radioactive material. (2.1 x 10^{13} Bq)

Handout: Half-Life, Activity and Decay Constant

Science 122 Half-Life, Activity and Decay Constant

- In 9.0 days, the number of radioactive nuclei decreases to one-eighth the number present initially. What is the half-life (in days) of the material? (3.0 days)
- 2. The isotope radium-224 has a decay constant of 2.19 x 10⁻⁶ s⁻¹. What is the half-life (in days) of this isotope? (3.66 days)
- 3. How many half-lives are required for the number of radioactive nuclei to decrease to one-millionth of the initial number? (19.9)
- 4. Iodine-131 is used in diagnostic and therapeutic techniques in the treatment of thyroid disorders. This isotope has a half-life of 8.04 days. What percentage of an initial sample of iodine-131 remains after 30.0 days? (7.53%)
- 5. Strontiun-90 has a half-life of 28.5yr. It is chemically similar to calcium, enters the body through the food chain and collects in the bones. Consequently, strontium-90 is a particularly serious health hazard. How long (in years) will it take for 99.9900% of the strontium-90 released in a nuclear reactor accident to disappear? (379 years)
- 6. If the activity of a radioactive substance is initially 398 disintegrations/min and two days later it is 285 disintegrations/min, what is the activity four days after the first two days? Give your answer in terms of disintegrations per minute. (146 disintegrations/min)
- 7. To make the dial of a watch glow in the dark, 1.000×10^9 kg of radium-226 is used. The half-life of this isotope is 1.60×10^3 years. How many kilograms of radium disappear while the watch is in use for fifty years? $(2.1 \times 10^{-11} \text{ kg})$
- 8. A sample of ore containing radioactive strontium-90 has an activity of 6.0 x 10⁵ Bq. The molar mass of strontium-90 is 89.908 g/mol and its half-life is 28.5 years. How many grams of strontium are in the sample? (1.2 x 10⁻⁷ g)