Day 5 Mutually Exclusive Events.notebook

Warm Up

1 A fair die is tossed twice. Find the probability of getting a 4 or 5 on the first toss and a 1, 2, or 3 in the second toss. $P(\mathbf{1}_{4}, \mathbf{5}_{5}, \mathbf{0}_{5}, \mathbf{0}_$ 1/6 2 Two balls are drawn successively without replacement from a box which contains 4 white balls and 3 red balls. Find the probability that (a) the first ball drawn is white and the second is red; $P(W) \times P(R)$ 1 (b) both balls are red. 3 l A bag contains 5 white marbles, 3 black marbles and 2 green marbles. In each draw, a marble is drawn from the bag and not replaced. In three draws, find the

probability of obtaining white, black and green in that order. $\frac{1}{24}$

Day 5 Mutually Exclusive Events.notebook

b) $P(\bar{p}) = \frac{q_s}{100}$ $(\mathcal{C}) \mathcal{P}(\mathcal{D} - \mathcal{D})$

Summarize ~ AND" Independent : Dependent " with replacement i replacement i without replacement i denominant of the server of th

Mutually Exclusive Events

QUESTION - "What is the probability of event A OR event B occurring?"

• when events <u>can not</u> happen at the SAME time.

For mutually exclusive even	nts,
P(A or B) = P(A)	+ P(B)

- let's look at this type of probability using something called a Venn Diagram...
- ex: What is the probability of drawing a Jack or an odd numbered card?

P(Jack OR odd #) = P(Jack) + P(odd #) $= \frac{4}{52} + \frac{4}{52}$

$$= \frac{30}{62} = \frac{5}{13}$$

ex: Determine the probability of drawing a club or rolling a sum of 4 with two fair dice.

ex: Determine the probability that a student is randomly selected from this class and they were born on a Thursday or in the month of May?

Answers

30.
6; 8: 5/36; 9: 4/36;
5, 1 : 17, 1 : 11,
: 11, 1 : 17, 1 : 35
1:1 10 1-1
·3 b) 2.10.0.4
.5 0) 5:10;9:4
; all have equal
$\frac{1}{4}$; $\frac{1}{2}$; $\frac{1}{4}$ b) 1 : 3;
8.a) 1/8; 3/8; 3/8; 1/8

e) $\frac{1}{138}$ d) $\frac{25}{276}$ e) $\frac{2}{69}$	138 92
Section 3.14, page 145 Activity: a) The probal ally exclusive events occ	bility of either one of mut curing is the sum of the
individual probabilities.	1. 0.4 2. $\frac{5}{8}$ 3.a) $\frac{1}{6}$; $\frac{1}{6}$
b) $\frac{1}{3}$; $\frac{1}{3}$ 4.a) $\frac{1}{12}$; $\frac{1}{9}$ b)	$\frac{7}{16}$; $\frac{7}{16}$ 5.a) $\frac{1}{12}$ b) $\frac{9}{12}$

c) 224 d) Answers will vary. 8.a) 35 b) 15

	-	-	-	-	50	50		13	13
c)	$\frac{3}{13}$	d)	They	sum to	1. 6.	a) $\frac{2}{13}$	b) -	2	c) $\frac{2}{13}$
d)	$\frac{2}{13}$	7.a	$\frac{11}{20}$ b	$\frac{13}{20}$ c)	$\frac{4}{5}$ d	Ŋ 1	e) $\frac{1}{5}$	8.	Answers

will vary. 9.a) 0.108 b) 0.036 c) 0.383 d) 0.533

Section 3.15, page 147

1.a) $\frac{4}{13}$ b) $\frac{7}{13}$ c) $\frac{11}{26}$ d) $\frac{11}{13}$ **2.** $\frac{4}{13}$ **3.a)** $\frac{7}{12}$ b) $\frac{7}{12}$ c) $\frac{2}{3}$ d) $\frac{7}{12}$ e) $\frac{3}{4}$ f) $\frac{3}{4}$ g) 1 4.a) $\frac{2}{5}$ b) $\frac{2}{5}$ c) $\frac{2}{5}$ d) $\frac{2}{3}$ e) $\frac{2}{3}$ f) 1 5.a) $\frac{2}{3}$ b) $\frac{1}{6}$ c) $\frac{1}{3}$ d) $\frac{5}{18}$ e) 1

Section 3.16, page 148 Answers will vary.

HOMEWORK... 3.14 Worksheet - Mutually Exclusive Events.doc - Omit #8 " * 5d,e Omit 4b Omit 9 Utually Enclusive P(A OR B) = P(A) + P(B)

Quiz: Counting principle, tree diagram, sample space, probability, Odds, independent/dependent events

• Work on mutually exclusive worksheet when finished

Worksheet - Mutually Exclusive Events.doc