Warm Up

A frustrated Math student opens his second floor bedroom window and throws his textbook and it lands on the lawn below the window. The height h (metres) of the textbook at any tire is falling toward the ground is represented by the equation $h = -4.9t^2 + 39.2t + 8$

- (a) What is the maximum height reached by the textbook?
- (b) How high is the student's bedroom window above the ground?

Warm Up

A frustrated Math student opens his second floor bedroom window and throws his textbook and it lands on the lawn below the window. The height h (metres) of the textbook at any tin is falling toward the ground is represented by the equation $h = -4.97^2 + 39.714.3$ (a) What is the maximum height reached by the textbook?

Inadmissable Roots

- one of the roots of a quadratic equation may not lead to a solution that satisfies the original problem.
- may also be called an "extraneous root"

Example #1: The width (in metres) for the most efficient wind tunnel is given by the equation...

$$w^2 + 1.40w - 7.35 = 0$$

Solve the equation to obtain the width.

Example #2: After experimentation, it was found that the safe stopping distance, d, (in metres) for a heavy aircraft that taxis at a speed, v, (in km/h) is given by...

$$d = 0.003(6v^2 + 400v + 50000)$$

a) What is the safe stopping distance of the aircraft taxiing at 100 km/h?

$$d = 0.003 (6(100)^{2} + 4(100) + 50000)$$

b) Determine the speed at which the aircraft is taxiing to take 200 m to stop safely.

$$\frac{200}{0.003} = 0.003(60^{2} + 4000 + 50000)$$

Example #2: After experimentation, it was found that the safe stopping distance, d, (in metres) for a heavy aircraft that taxis at a speed, v, (in km/h) is given by...

$$d = 0.003(6v^2 + 400v + 50\ 000)$$

b) Determine the speed at which the aircraft is taxiing to take 200 m to stop safely.

Textbook Questions page 215 #1 page 231 #12,13 page 241 # 9,10 page 255 #11,13a, 14

Page 241 #8, 11 page 254 #8, 9,10

11.
$$h(d) = -0.4(d-2.5)^2 + 2.5$$

 $0 = -0.4(d-2.5)^2 + 2.5$
 $-2.5 = -0.4(d-2.5)^2$
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4
 -0.4

Solving Word Problems: Building Quadratic Equations

STRATEGIES: - declare variable(s).

- draw a sketch if needed
- build a quadratic equation.
- solve

EXAMPLE #1...

Two positive numbers differ by 4 and the sum of their squares is 1/36. Find the numbers.

EXAMPLE #2:

For Curran Park, a landscaper wishes to plant a boundary of tulips within a rectangular garden with dimensions 18 m by 12m. The tulip border should be half the area of the garden. How wide should the border be? (1 decimal place)

SOLUTION???

