Review of domain and range...

Find the domain and range of the following functions from the graph. Use correct set notation

D: {x/xeR} R: {y/y≤3,yeR} D: {x/-2<x=4,xk} R: {y/0<y=2,xk}

D: {x|-2=x<3,xkR} R: {x|-1=y<1,yer}

R. {y/yER,y+0}

5.6 Properties of Linear Relations

LESSON FOCUS

Identify and represent linear relations in different ways.

Make Connections

The table of values and graph show the cost of a pizza with up to 5 extra toppings.

Number of Extra Toppings	Cost (\$)
0	12.00
1	12.75
2	13.50
3	14.25
4	15.00
5	15.75

What patterns do you see in the table?

Write a rule for the pattern that relates the cost of a pizza to the number of its toppings.

How are the patterns in the table shown in the graph?

How can you tell from the table that the graph represents a linear relation?

5.6 Properties of Linear Relations

Here is another example of a linear relation...

The cost for a car rental is \$60, plus \$20 for every 100 km driven.

The independent variable is the distance driven and the dependent variable is the cost.

We can identify that this is a linear relation in different ways.

For a linear relation, a constant change in the independent variable results in a constant change in the dependent variable.

5.6 Properties of Linear Relations

Which table of values represents a linear relation? Justify your answer.

a) The relation between the number of bacteria in a culture, n, and time, t minutes.

	t	n	Won-Linear
LV	0 /	1	71 1/0 1/1- 5/1000
×	\$ 20	2 🗸	7.2
νlu	\$ 40	4 🛂	The same
1	60	8	Man-1, mear
	80	16	
	100	32	

b) The relation between the amount of goods and services tax charged, T dollars, and the amount of the purchase, A dollars

•	\boldsymbol{A}	\boldsymbol{T}	
.12	60	3	, 3
	120	6	X
'\	180	9 •	١ ، /
V,	240	12	V
V	300	15	

The rate of change is 0.20/km; that is, for each additional 1 km driven, the rental cost increases by 20¢. The rate of change is constant for a linear relation.

We can determine the rate of change from the equation that represents the linear function.

Let the cost be C dollars and the distance driven be d kilometres.

An equation for this linear function is:

5.6 Properties of Linear Relations

e.

f.

Graphing Relations

I. Using a table of values:

Using a Table of Values to Graph a Linear Relation Worksheet

Find the value of "y" in the following table(s) of values.

a)
$$y = x + 2$$
 b) $y = 2x + 1$ c) $y = 3x - 1$ d) $y = 2x$

b)
$$v = 2x + 1$$

c)
$$y = 3x - 1$$

d)
$$y = 2x$$

X	у
0	7
. 1	3
2	4
3	5
4	6

×	У
3	
4	
5	
6	
20	
-	©

X	У
8	2}
9	96
10	29
11	31
25	74

e)
$$y = \frac{1}{2}x + 2$$

×	у
0	9
2	3
4	7
6	5
8	6

f)
$$y = \frac{1}{3}x - 3$$

X	у
3	
6	
9	
12	

• Graph y = 2x + 3

Graph the equation: y = -3x + 5

