Warm-Up... —(x+2)+1 if x<-1

x+1 if —-1<x<2
f()— i x=2
3 if x>2

(a) Using the three conditions for continuity examine f{x) for any points of discontinuity.

At any point(s) of discontinuity clearly indicate a mathematical reason to support why the

function is discontinuous at that particular point. [4]
(b) Draw a sketch of f(x) to support what you have found in part (a). [4]
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Limits at Infinity

What exactly is infinity? - |

e It is the process of making a value arbitrarily
large or small

+ op = Positive Infinity...process of becoming arbitrarily large

— ) = Negative Infinity...process of becoming arbitrarily small

[4] Definition Let f be a function defined on some interval (a, %). Then
lim f(x) = L

means that the values of f(x) can be made as close to L as we like by taking x
sufficiently large.
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Have a look at these limits...

lirnl lim 1
r—m X X——1 X
=0

In general...

If n is a positive integer, then
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Calculating limits at infinity without using a graph

« Rational Functions
Note: If every term in a rational expression is divided

by the same value, the rational expression will
still be equal to it's original value
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This will be important when evaluating limits
for rational functions approaching infinity...

Look at the following example:
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This graph below validates our solution:
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Evaluate the following limit: - .,) ( / 5)
_ _ = -x
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« Exponential Functions @ u.,-e ‘;g # )
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Try each of these...
1. lim 2° 2. lim—x
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Homework:
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