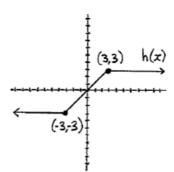
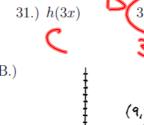
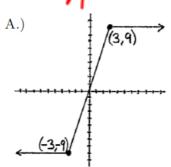
Warm-Up...

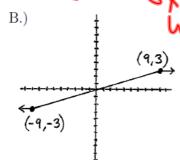


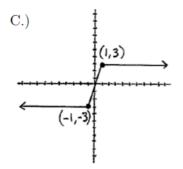
Given the graph of h(x) above, match the following four functions with their graphs.

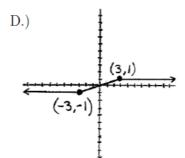


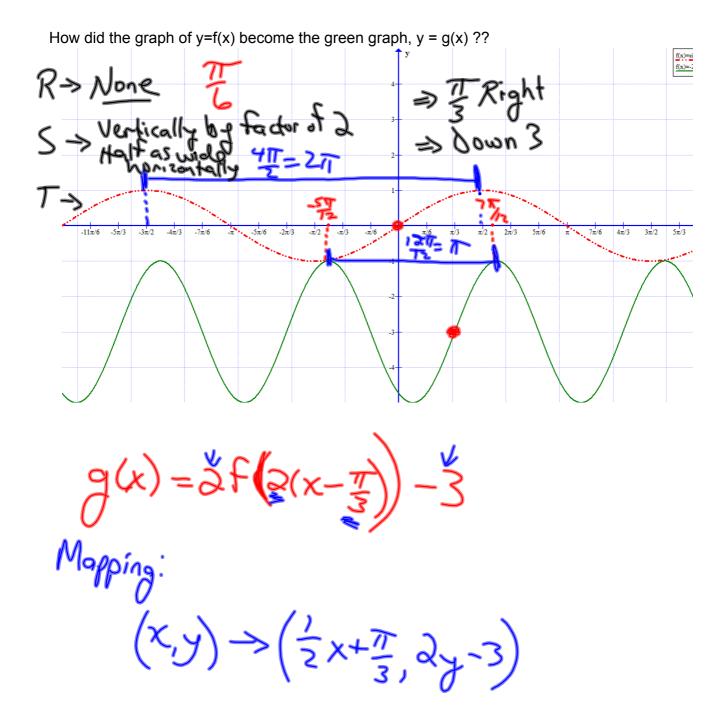












b)
$$y-k=a+(b(x-b))+k$$

H. Stretch $\Rightarrow \frac{3}{5}$

V. Stretch $\Rightarrow \frac{3}{5}$

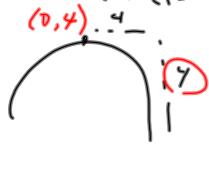
Reflects Both exes

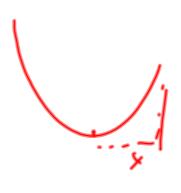
V. Stretch
$$\Rightarrow \frac{s}{7}$$
Reflects Both exes

Gunits Right

Zunits Up

$$y = \frac{3}{4}f(-3(x-6)) + 2$$





Inverse of a Relation

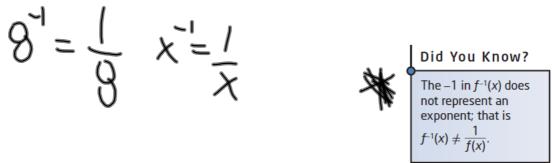
An inverse function is a second function which undoes the work of the first one.

1. Introduction

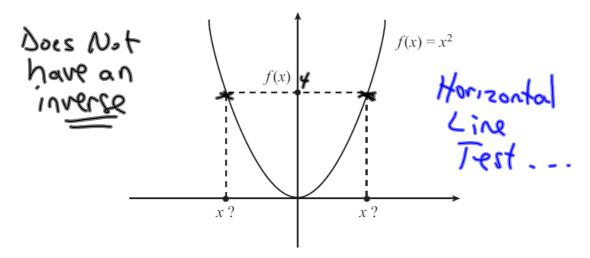
Suppose we have a function f that takes x to y, so that

f(x)=y. An inverse function, which we call f^{-1} , is another function that takes y back to x . So $f^{-1}(y)=x.$

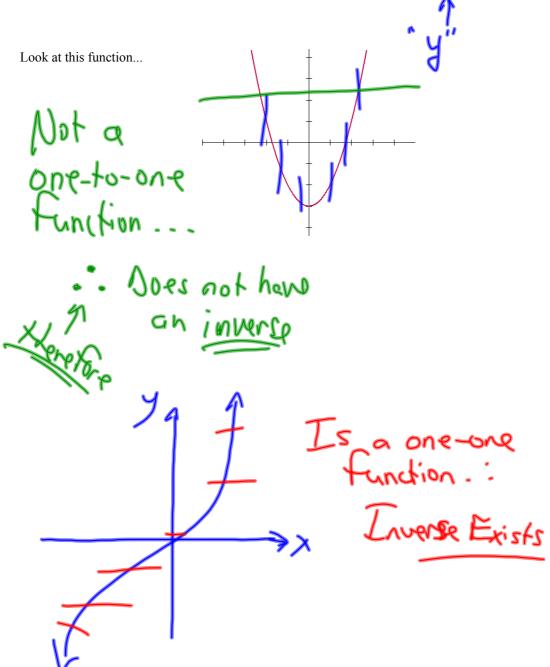
For f^{-1} to be an inverse of f, this needs to work for every x that f acts upon.



Not all functions have inverses. For example, let us see what happens if we try to find an inverse for $f(x)=x^2$.



A function is said to be a one-to-one function if it never takes on the same value twice.



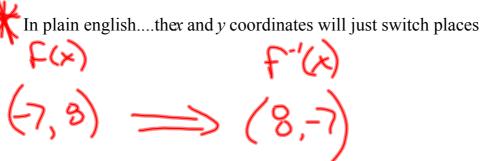
If a function is a one-to-one function then it will posses what is called an inverse function.

If f is a one-to-one function with domain A and range B. Then itsinverse **function**, f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

for any y in B.

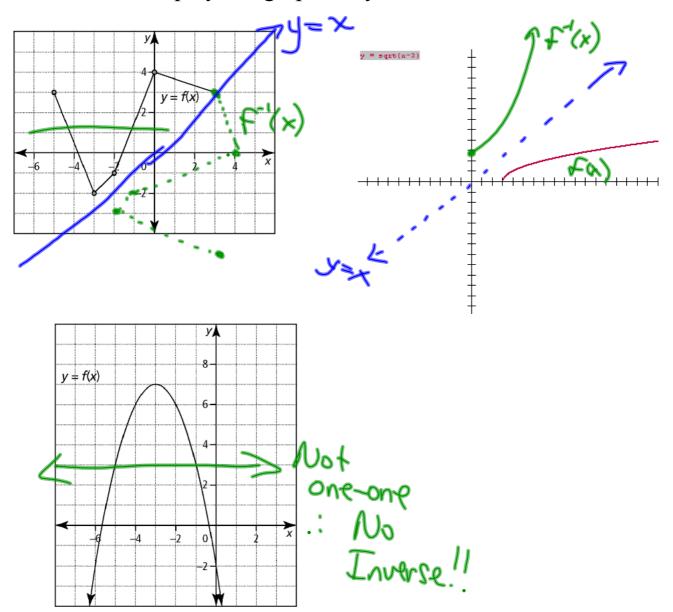
domain of f^{-1} = range of frange of $f^{-1} = \text{domain of } f$



The inverse of a relation is found by interchanging the x-coordinates and y-coordinates of the ordered pairs of the relation. In other words, for every ordered pair (x, y) of a relation, there is an ordered pair (y, x) on the inverse of the relation. This means that the graphs of a relation and its inverse are reflections of each other in the line y = x.

$$(x, y) \rightarrow (y, x)$$

How does this play out graphically?



What if given the function algebraically?

Determine algebraically the equation of the inverse of each function.

a)
$$f(x) = 3x - 6$$

b) $f(x) = \frac{1}{2}x + 5$
c) $f(x) = \frac{1}{3}(x + 12)$ *d) $f(x) = \frac{8x + 12}{4}$

a)
$$y = 3x - 6$$
 $x \mid y \mid d$ $y = 2x + 3$
 $x = 3y - 6$ $x \mid y \mid d$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 6$ $x = 3y + 3$
 $x = 3y - 3y + 3$

Determine the inverse for each of the following functions:

1.
$$f(x) = 2x - 5$$

$$2. f(x) = \sqrt{x-3} + 4$$

$$x = \sqrt{y-3} + 4$$

$$x - 4 = \sqrt{y-3}$$

$$(x-4)^2 = y - 3$$

$$y = (x-4)^2 + 3$$

$$f(x) = (x-4)^2 + 3$$

Practice Problems...

Pages 51 - 55 #2, 3, 5, 6, 8, 9, 11, 15, 18, 20, 21