Practice Problems...

Pages 175 - 178 #3, 4, 5, 6, 7, 9, 11, 12, 13 Two flywheels are connected by a belt, as shown in the diagram below. The larger one has a radius of 6 cm and the smaller one has a radius of 2 cm.

- (a) If the small wheel rotates –300°, then through how many radians does the large wheel rotate?
- (b) If the large wheel rotates $\frac{7\pi}{6}$ radians, what distance would a point on the circumference of the small wheel rotate?

(a) Larger Whel:

(b)
$$Q = a$$
 Radians

 $Q = 300^{\circ}(t)/00^{\circ}$

(c) $Q = 400\pi$
 $Q = 77\pi$

Arcs are equal on Both Whels

Angular Velocity

Angular velocity - amount of rotation around a central point per unit of time

$$V = \frac{d}{t}$$

$$v_a = \frac{\theta}{t}$$

$$\theta = \text{angle (radians)}$$
 $\theta = \frac{a}{r}$

 $v_a = angular velocity$

a = arc length

t = time

r = radius

Ex. The roller on a computer printer makes 2200 rpm (revolution per minute). Find the roller's angular velocity.

Ex. (a) If wheel 1 rotates 40 radians, how far has the belt traveled?

(b) Given the 40 rad rotation of wheel 1, what was the angle of rotation for wheel 2?

Ex. A small electrical motor turns at 2200 rpm.

- (a) Express the angular velocity in rad/s.
- (b) Find the distance a point 0.8cm from the center of rotation travels in 0.008 s.

a)
$$2200 \text{ Rev} \times \frac{217 \text{ Rod}}{1/2 \text{ ev}} = 440017 \text{ Rad} \times \frac{1 \text{ min.}}{1 \text{ min.}}$$

$$= 73.3 \text{ Rad/Sec}$$
b) $Q = Q$

$$Q = 73.3 \text{ Rad/Sec}$$

$$Q = 73.3 \text{ Rad/Sec}$$

$$Q = 73.3 \text{ Rad/Sec}$$

$$Q = 0.586 \text{ Mad/Sec}$$

$$Q = 1.842 \text{ (0.8cm)}$$

$$Q = 1.842$$

Ex. A Ferris Wheel rotates 3 times each minute. The passengers sit in seats that are 5 m from the center of the wheel. What is the angular velocity of the wheel in radians per second? What distance do the passengers travel in 6.5 seconds?

Ex. A bicycle wheel has a radius of 36 cm and is turning at 4.8m/s. Determine the angula

0.3 M 0.3 M 0-46.296 Rad VA= 46.296 Rad 1580 Practice Problems...

Page 176 - 179 #14, 15, 16, 19, 20 a, b , 21, 22, 23, 24, 25, 26, 27

Warm Up

A basketball rolling across the floor completes 75 revolutions per minute. The linear velocity of the basketball is 2.5 m/s. Find the radius of the basketball and its angular

Rotates 7.9 Radians
in I second
Travels 2.5 m;
On p sec

42 Angu

42 Rev/Minute Angular Velocity??

42 Rev => 42(27) Rad = 84 Trad VA= 84 Trad = 4.4 Rad/sor