Expand
$$(2x^{6} - 3y^{7})^{4} \rightarrow y^{3} = (2x^{6})^{2} + (2x^{6})^{$$

Find the numerical coefficient of the x^4y^9 variable for the binomial $(x^2 - 2y^3)^5$.

Find the numerical coefficient of the $x_y^{2/5}$ variable for the binomial $(3x^2 - 2y^3)^6$ $(3x^2)(-2y^3)^6$ $(3x^2)(-2y^2)^6$ $(3x^2)$

HOMEWORK EXERCISE...

Expand...

a)
$$(x^2 - 2y^2)^4$$

Remember: there are still two terms!

b)
$$(3x^3 + y)^5$$

c)
$$(3x^4 - 4y^3)^5$$

Probability:

 $P(3) = \frac{1}{6}$

P(Event) = Favorable outromes total outromes

Odds (Event) = Favorable un Favorable
outcomes outcomes

Lotto-649 ... Probability of winning??

Total outcomes ... ??

6 #'s drawn, Not Replaced

(49)(48)(47)(46)(45)(44)

10,068347,520

TAG: \$100 000

378880 70 378881

(0)(10)(10)(10)(10)

106

Fundamental Counting Principles

Multiplication Principle - key word is "AND".

multiply all possible outcomes from
 each event to get the total number of
 possible outcomes.

$$n(A \text{ and then } B) = n(A) \times n(B)$$

ex: From the Toronoto International Airport, there are four routes to Montreal and two routes to fly from Montreal to Halifax. How many different routes are there from Toronto to Halifax?

of routes = 4 x 2 = 8 different routes (prove using a tree diagram)

SOLUTION???

Addition Principle - key word is "OR".

- add all possible outcomes from each event to get the total number of possible outcomes.

$$n(A \text{ or } B) = n(A) + n(B)$$

ex: Mia wishes to purchase a brand new car. Her choices include two foreign models or four domestic models. In how many ways can she select a car?

SOLUTION???

ex: License plates in Vermont consist of 3 digits and 3 letters. Given that digits and numbers can be repeated, how many different license plates would be possible? What if digits and letters could not be repeated?

(#)(#)(/let)(let)(let) Total: 10x10x10x26x26x26

=17 576000

= 6x5x4x3x2x 1

$$\frac{12!}{8!} = \frac{12x11x10x9x9x9t}{9!}$$