One of the main food sources for the Arctic fox is the lemming. Suppose the population, *L*, of lemmings in the region is modelled by the function $L(t) = 5000 \sin \frac{\pi}{12}(t - 12) + 10\ 000.$

(a) Determine the lemming population during year 15 of this study.
 (b) Determine the second instance that the lemming population reached 8000.

$$(a) \left((15) = 5000 \sin \left(\frac{11}{12} (15-12) + 10000 \right) \\ = 13 \frac{5}{36} \frac{5}{26} \frac{1}{12} (\frac{1}{5}-12) + 10000 \\ = 13 \frac{5}{36} \frac{5}{26} \frac{1}{12} (\frac{1}{5}-12) + 10000 \\ = \frac{1}{12} \frac{5}{36} \frac{1}{12} (\frac{1}{5}-12) + 10000 \\ = \frac{1}{12} \frac{1}{12} (\frac{1}{5}-12) + 10000 \\ = \frac{1}{12} \frac{1}{12} (\frac{1}{5}-12) + 10000 \\ = \frac{1}{12} \frac{1}{12} (\frac{1}{5}-12) + 12 = \frac{1}{12} (\frac{1}{5}-12) \\ = \frac{1}{12} \frac$$

What is the Period??
Per=
$$\frac{2\pi}{K}$$
 ... $K = \frac{\pi}{12}$
Per= $\frac{2\pi}{K} = 2A \cdot \frac{12}{\pi}$
 $\frac{\pi}{12} = 2A \cdot \frac{12}{\pi}$
 $\frac{\pi}{12} = \frac{2}{\pi} + \frac{12}{\pi}$
 $\frac{\pi}{12} = \frac{2}{\pi} + \frac{12}{\pi}$
 $\frac{\pi}{12} = \frac{12}{\pi}$

What about graphs of other trigonometric functions ???

Graph the Tangent Function

Key Ideas

- You can use asymptotes and three points to sketch one cycle of a tangent function. To graph *y* = tan *x*, draw one asymptote; draw the points where *y* = −1, *y* = 0, and *y* = 1; and then draw another asymptote.
- The tangent function *y* = tan *x* has the following characteristics:
 - The period is π.
 - The graph has no maximum or minimum values.
 - The range is $\{y \mid y \in \mathbb{R}\}$.
 - Vertical asymptotes occur at $x = \frac{\pi}{2} + n\pi$, $n \in I$.
 - The domain is $\left\{ x \mid x \neq \frac{\pi}{2} + n\pi, x \in \mathbb{R}, n \in \mathbb{I} \right\}$.
 - The x-intercepts occur at $x = n\pi$, $n \in I$.
 - The y-intercept is 0.

How can you determine the location of the asymptotes for the function $y = \tan x$?

Graphs of Other Trigonometric Functions

$$y = \cos x$$

Qui

<u>REVIEW</u> - Sketching Trigonometric Functions

- sinusoidal functions
 - properties: domain/range, amplitude, period, phase shift, vertical translation, eq'n of sinusoidal axis, mapping notation.
 - sketching equation in standard form.
- finding the function (both a sine/cosine) given a graph
- solving trigonometric equations where period is not 360
- applications of sinusoidal functions.
 - sketch
 - develop a function
 - use function to answer question
- sketches of all SIX trigonometric ratios

Textbook Review....

Pg. 282 - 285

#4, 6, 7, 8, 10, 11, 20, 21, 22, 23, 24

Practice Test: Page 286 - 287 #1 - 7 #11, 12, 14, 15, 16

PRACTICE TIME

Review - Practice Test for Sinusoidal Functions.doc $\ref{eq:second}$

Practice Test Solutions

Part A: Multiple Choice

1. A	11. A (second hand)	1. $-\frac{5}{4}$
2. D	12. C	4
3. A	13. A	2 (1)
4. C	14. C	2. (1)
5. B	15. D	
6. D	16. D	
7. A	17. B	
8. D	18. D	
9. B	19. A	
10. A	20. A	

Part B: Open Response

i) $y = 3\sin\frac{3}{2}(x - 160^{\circ}) - 6$ $y = 3\cos\frac{3}{2}(x + 20^{\circ}) - 6$ (ii) $(x, y) \rightarrow \left(\frac{2}{3}x + 160^{\circ}, 3y - 6\right)$

TEXAS I	NSTRUMENT	rs TI-83 Plu
Х	¥1	
15 45 75 105 135 165	NHNNNHN	
X=195	5	

4. 10.28 m

omit #7

MORE PRACTICE???

Review -	Trigonometric	Functions.doc
Ø	C	

SOLUTIONS

1. (a) 39*	(b) 53 °
2. (a) -2	(b) $\frac{7-2\sqrt{3}}{4}$
3. (a) II	(6) II
4. (a) -1.2799 c) 1.2690 (e) -5	(b) -1.0864 (d) 39* (f) 25*
5. $\sin \theta = \frac{-\sqrt{5}}{5}$	csœ =- √5
$\cos\theta = \frac{-2\sqrt{5}}{5}$	$\sec\theta = \frac{\sqrt{5}}{2}$
$\tan \theta = \frac{1}{2}$	cot∂=2
6. $\frac{-\sqrt{10}}{2}$	
8. Amp = 3 Period = 180 • V.T. = Up 2 P.S. = none Domain: 0° ≤ θ ≤ 360°	(b) Amp = 2 Period = 120 * V.T. = Down 2 P.S. = 60 * left Domain: <i>B</i> ER
(c) Amp = 2 Period = 720 ° V.T. = Up 5 P.S. = none Domain: $-90 \le \theta \le 360^\circ$ Range: $-3 \le y \le 7$	(d) Amp = 6 Period = 360 ° V.T. = None P.S. = 90 ° right Domain: $\partial \epsilon R$ Range: $-6 \le y \le 6$
10. 11.9 m	

11.46.2 cm

Review - Practice Test for Sinusoidal Functions.doc

Review - Trigonometric Functions(3)(4).doc