$$= -\frac{5(3^{2}-3)}{2(3^{2}-3)} + \frac{3}{2}$$

$$= -\frac{5(3^{2}-3)}{2(3^{2}-3)} + \frac{3}$$

Rectilinear Motion and Derivatives

Any motion along a straight line is called rectilinear motion.

If s represents a function that measures displacement, then $\frac{ds}{dt}$ would represent ??? $velocity = \frac{ds}{dt}$

The rate of change of the velocity...ie. $\frac{\Delta \mathbf{v}}{\Delta t}$ would represent?? $\frac{\partial \mathbf{v}}{\partial t}$

So it follows that the second derivative of displacement will give us acceleration:

$$a = \frac{d^2s}{dt^2}$$
 ----- Notice the notation

Example

If the displacement (in metres) at time t (in seconds) of an object is given by

$$s = 4t^3 + 7t^2 - 2t,$$

find the acceleration at time t = 10.

$$S' = 12t^2 + 14t - 2$$
 (Velocity)
 $S'' = 24t + 14$ (a (relevation)
 $S'' = 24(10) + 14$
 $= 254 \text{ M/s}^2$

Example:

- The position of a particle is given by the equation $s = f(t) = t^3 6t^2 + 9t$, where t is measured in seconds and s in meters.
 - a) Find the velocity at time t.
 - b) What is the velocity after 2 s? After 4 s?
 - c) When is the particle at rest?
 - d) When is the particle moving forward (that is, in the positive direction)?
 - Draw a diagram to represent the motion of the particle.
 - f) Find the total distance traveled by the particle during the first five seconds.
 - Find the acceleration at time t and after 4 s.
 - h) Graph the position, velocity, and acceleration functions for $0 \le t \le 5$.
 - When is the particle speeding up? When is it slowing down?

$$s = f(t) = t^3 - 6t^2 + 9t$$

Find the velocity at time t.

What is the velocity after 2 s? After 4 s?

What is the velocity after 2 s? After 4 s?
$$S(z) = 3(2)^{2} - (2(2) + 9) \qquad S'(4) = 3(4)^{2} - (2(4) + 9) \qquad = 9 \text{ m/s}$$

 $s = f(t) = t^3 - 6t^2 + 9t$

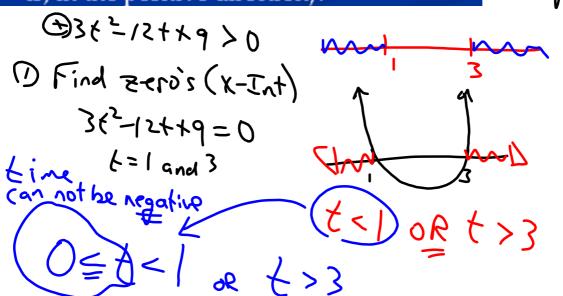
When is the particle at rest?

$$S'=0$$

$$3t^{2}-12t+9=0$$

$$5^{2}-12t+9=0$$

$$5^{2}-12t+9=0$$


$$5^{2}-12t+9=0$$

$$5^{2}-12t+9=0$$

$$5^{2}-12t+9=0$$

$$5^{2}-12t+9=0$$

When is the particle moving forward (that Velocity > 0

 Draw a diagram to represent the motion of the particle.

f) Find the total distance traveled by the particle during the first five seconds.

$$= 30$$

$$= 152 - 120 + 120$$

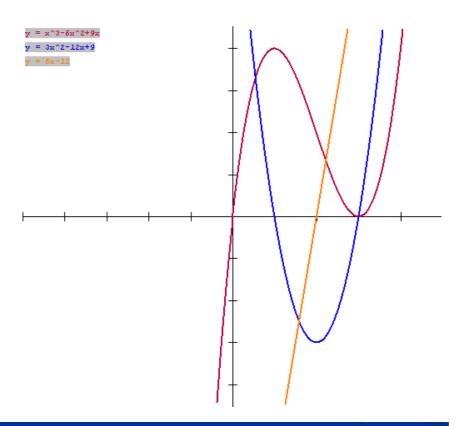
$$= 152 - 120 + 120$$

$$= 3 - 6(5)^{2} + 9(5)$$

 $_{\rm g)}$ Find the acceleration at time t and after 4 s.

$$S'' = Gt - 12$$

$$S''(y) = G(y) - 12$$


$$= 12 \text{ m/s}^{2}$$

h) Graph the position, velocity, and acceleration functions for $0 \le t \le 5$.

When is the particle speeding up? When is it slowing down? $s = f(t) = t^2 - 6t^2 + 9t$

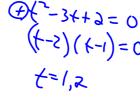
Speeding up. Vel > 0 and arcel > 0 Vel < 0 and arcel < 0 Vel < 0

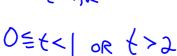
Graph the position, velocity, and acceleration functions for $0 \le t \le 5$.

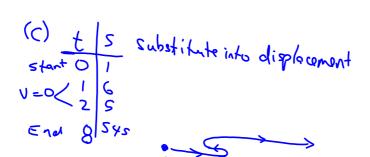
When is the particle speeding up? When is it slowing down?

Time to check your understanding...

A particle moves according to a law of motion $s(t) = 2t^3 - 9t^2 + 12t + 1$, $t \ge 0$.


- (a) Determine the velocity of the particle when it has acceleration 2 units/s².
- (b) When is this particle moving in a positive direction?
- (c) Sketch the path of this particle, and determine how far it has traveled during the first 8 seconds.


$$\frac{1}{2} = \frac{1}{4} \frac{1}{4} \frac{1}{4}$$


$$\frac{1}{2} = \frac{1}{4} \frac{1}{4}$$

$$\frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}$$

$$\frac{1}{4} = \frac{1}{4} \frac{1} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4$$

Untitled.notebook November 18, 2014

Practice exercises...

Page 125 Page 129

#3, 4, 5, 8, 9 #6, 7, 8

Topics to Review:

- Power rule, product rule, quotient rule, chain rule
- Derivatives of trigonometric functions
- Applications of derivatives...
 - *slopes of tangent lines *rectilinear motion
- Implicit differentiation
- Higher order derivatives

Review Questions...

Page 112 - 114	Page 115
#1 c, d	#1 (ii)
#7 b, d	#3
#8 b, d	#4
# 9 a, b, d, f	#5
#11	
#12	Page 154
	#2
	#3