Another means of calculating volume...

Cylindrical Shell Method:

Consider the area bounded by the graph of the function $f(x) = x - x^2$ and the x-axis.

Choose some x_0 between 0 and 1. Draw a rectangle with height $f(x_0)$ and with very small width Δx .

Rotate the rectangle about the y-axis.

The result is a cylinder with a "very small side" like the side of a can:

Take this cylinder and cut it vertically as shown:

(Ircumberence

Imagine cutting a cake using this method...

This would be an example of a cylindrical shell

The volume of the solid obtained by rotating this area about the y-axis is:

rotating this area about the y-axis is:
$$2 \pi \int_0^1 x f(x) dx = 2 \pi \int_0^1 x (x - x^2) dx$$

Notice that even though we are rotating about a vertical line, the integral is still in terms of *x*.

What if we had used cylindrical disks?

Example 1:

The region bounded by the curve $y = 4 - x^2$, y = 3x, and x = 0 is revolved about the y-axis to generate a solid. Determine the volume of this solid.

Shells $2\pi \int x(4-x^2-3x)dx$ $2\pi \int (4x-x^2-3x^2)dx$